Perfect State Transfer between Non-Antipodal Vertices in Integral Circulant Graphs

Milan Basié1
1 Faculty of Sciences and Mathematics, University of Nig, Visegradska 33, 18000 Nig, Serbia

Abstract

In this paper, we investigate the existence of perfect state transfer in integral circulant graphs between non-antipodal vertices—vertices that are not at the diameter of a graph. Perfect state transfer is considered on circulant quantum spin networks with nearest-neighbor couplings. The network is described by a circulant graph \(G\), which is characterized by its circulant adjacency matrix \(A\). Formally, we say that there exists perfect state transfer (PST) between vertices \(a, b \in V(G)\) if \(|F(\tau)_{ab}| = 1\) for some positive real number \(\tau\), where \(F(\tau) = \exp(itA)\). Saxena, Severini, and Shparlinski (International Journal of Quantum Information 5 (2007), 417-430) proved that \(|F(\tau)_{aa}| = 1\) for some \(a \in V(G)\) and \(t \in \mathbb{R}\) if and only if all the eigenvalues of \(G\) are integers (that is, the graph is integral). The integral circulant graph \(ICG_n(D)\) has the vertex set \(\mathbb{Z}_n = \{0, 1, 2, \ldots, n-1\}\) and vertices \(a\) and \(b\) are adjacent if \(\gcd(a-b, n) \in D\), where \(D \subseteq \{d: d|n, 1 \leq d \leq n\}\). We characterize completely the class of integral circulant graphs having PST between non-antipodal vertices for \(|D| = 2\). We have thus answered the question posed by Godsil on the existence of classes of graphs with PST between non-antipodal vertices. Moreover, for all values of \(n\) such that \(ICG_n(D)\) has PST (\(n \in 4\mathbb{N}\)), several classes of graphs \(ICG_n(D)\) are constructed such that PST exists between non-antipodal vertices.