Contents

-

Barycentric and Zero-Sum Ramsey Numbers

Yair Caro1, Leida Gonzalez2, Luz Elimar Marchan3, Oscar Ordazé4
1Department of Mathematics. University of Haifa-Oranim. Tivon-36006. Israel
2Departamento de MatemAticas and Laboratorio MoST Centro ISYS, Facultad de Ciencias, Universidad Central de Venezuela, Ap. 47567, Caracas 1041-A, Venezuela.
3Departamento de Matemiaticas. Decanato de Ciencias y Tecnologfas, Universidad Centroccidental Lisandro Alvarado, Barquisimeto, Venezuela.
4Departamento de MatemAticas and Laboratorio MoST Centro ISYS, Facultad de Ciencias, Universidad Central de Venezuela, Ap. 47567, Caracas 1041-A, Venezuela. Corresponding author.

Abstract

Let G be a finite abelian group of order n. The barycentric Ramsey number BR(H,G) is the minimum positive integer r such that any coloring of the edges of the complete graph Kr by elements of G contains a subgraph H whose assigned edge colors constitute a barycentric sequence, i.e., there exists one edge whose color is the “average” of the colors of all edges in H. When the number of edges e(H)0(modexp(G)), BR(H,G) are the well-known zero-sum Ramsey numbers R(H,G). In this work, these Ramsey numbers are determined for some graphs, in particular, for graphs with five edges without isolated vertices using G=Zn, where 2n4, and for some graphs H with e(H)0(mod2) using G=Z2s.