Some Generalizations of Multiple Laguerre Polynomials via Rodrigues Formula

M.Ali Özarslan1, Cem Kaanoglu2
1astern Mediterranean University, Faculty of Arts and Sciences, Department of Mathematics, Gazimagusa, Mersin 10, Turkey
2Cyprus International University, Faculty of Engineering, Lefkoga, Mersin 10, Turkey

Abstract

This paper aims to provide a systematic investigation of the family of polynomials generated by the Rodrigues’ formulas
\[K_{n_1,n_2}^{(\alpha_1, \alpha_2)}(x, k,p) = (-1)^{n_1+n_2} e^{px^k}[\prod\limits_{j=1}^2x^{-\alpha}\frac{d^nj}{dx^{n_j}} (x)^{\alpha_j+n_j}]e^{-px^k},\]
and
\[M_{n_1,n_2}^{(\alpha_0,p_1,p_2)}(x, k) = \frac{(-1)^{n_1+n_2}}{p_1^{n_1}p_2^{p_2}}x^{-\alpha_0}[\prod\limits_ {j=1}^{2}e^{p_jx^k}\frac{d^nj}{dx^{n_j}}{dx^{n_j}}e^{-p_jx^k}]x^{n_1+n_2+\alpha_0},\]
These polynomials include the multiple Laguerre and the multiple Laguerre-Hahn polynomials, respectively. The explicit forms, certain operational formulas involving these polynomials with some applications, and linear generating functions for \(K_{n_1,n_2}^{(\alpha_1, \alpha_2)}(x, k,p)\) and \(M_{n_1,n_2}^{(\alpha_0,p_1,p_2)}(x, k)\) are obtained.