In this paper, we present a new combinatorial problem, called the Nearly Perfect Bipartition Problem, which is motivated by a computer networks application. This leads to a new graph parameter, \(PN_p(G)\), which equals the maximum cardinality of a proper nearly perfect set. We show that the corresponding decision problem is \(NP\)-hard, even when restricted to graphs of diameter \(3\). We present several bounds for \(PN_p(G)\) and determine the value of \(PN_p(G)\) for several classes of graphs.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.