Contents

-

On the Bounds for Sizes of Least Common Multiples of Several Pairs of Graphs

M.I. Jinnah1, Shayida R2
1Formerly Professor, Department of Mathematics, Kerala University, Thiruvananthapuram.
2Associate Professor, Department of Mathematics, Farook College, Kozhikode.

Abstract

G. Chartrand et al. [3] define a graph G without isolated vertices to be the least common multiple (lcm) of two graphs G1 and G2 if G is a graph of minimum size such that G is both G1-decomposable and G2-decomposable. A bi-star Bm,n is a caterpillar with spine length one. In this paper, we discuss a good lower bound for lcm(Bm,n,G), where G is a simple graph. We also investigate lcm(Bm,n,rK2) and provide a good lower bound and an appropriate upper bound for lcm(Bm,n,Pr+1) for all m1, n1, and r1.