On the Bounds for Sizes of Least Common Multiples of Several Pairs of Graphs

M.I. Jinnah1, Shayida R2
1Formerly Professor, Department of Mathematics, Kerala University, Thiruvananthapuram.
2Associate Professor, Department of Mathematics, Farook College, Kozhikode.

Abstract

G. Chartrand et al. [3] define a graph \(G\) without isolated vertices to be the least common multiple (lcm) of two graphs \(G_1\) and \(G_2\) if \(G\) is a graph of minimum size such that \(G\) is both \(G_1\)-decomposable and \(G_2\)-decomposable. A bi-star \(B_{m,n}\) is a caterpillar with spine length one. In this paper, we discuss a good lower bound for \(lcm(B_{m,n}, G)\), where \(G\) is a simple graph. We also investigate \(lcm(B_{m,n}, rK_2)\) and provide a good lower bound and an appropriate upper bound for \(lcm(B_{m,n}, P_{r+1})\) for all \(m \geq 1\), \(n \geq 1\), and \(r \geq 1\).