Planar, Outerplanar and Ring Graph Cozero-Divisor Graphs

M. Afkhami1,2, M. Farrokhi D. G.3, K. Khashayarmanesh3,2
1Department of Mathematics, University of Neyshabur, P.O.Box 91136-899, Neyshabur, Iran
2School of Mathematics, Institute for Research in Fundamental Sciences(IPM), P.O.Box 19395-5746, Tehran, Iran
3Department of Pure Mathematics, Ferdowsi University of Mashhad, P.O.Box 1159-91775, Mashhad, Iran

Abstract

Let \(R\) be a commutative ring with non-zero identity. The cozero-divisor graph of \(R\), denoted by \(\Gamma'(R)\), is a graph with vertex-set \(W^*(R)\), which is the set of all non-zero non-unit elements of \(R\), and two distinct vertices \(a\) and \(b\) in \(W^*(R)\) are adjacent if and only if \(a \not\in Rb\) and \(b \not\in Ra\), where for \(c \in R\), \(Rc\) is the ideal generated by \(c\). In this paper, we completely determine all finite commutative rings \(R\) such that \(\Gamma'(R)\) is planar, outerplanar and a ring graph.