In 1972, Chvatal and Erdős showed that the graph \(G\) with independence number \(\alpha(G)\) no more than its connectivity \(\kappa(G)\) (i.e., \(\kappa(G) \geq \alpha(G)\)) is hamiltonian. In this paper, we consider a kind of Chvatal and Erdős type condition on edge-connectivity \(\lambda(G)\) and matching number (edge independence number). We show that if \(\lambda(G) \geq \alpha'(G) – 1\), then \(G\) is either supereulerian or in a well-defined family of graphs. Moreover, we weaken the condition \(\kappa(G) \geq \alpha(G) – 1\) in [11] to \(\lambda(G) \geq \alpha(G) – 1\) and obtain a similar characterization on non-supereulerian graphs. We also characterize the graph which contains a dominating closed trail under the assumption \(\lambda(G) \geq \alpha'(G) – 2\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.