The Adjacent Vertex Distinguishing Total Chromatic Number of Some Families of Snarks

Qin Chen1
1College of Science, China Jiliang University, Hangzhou 310018, P.R. China

Abstract

The adjacent vertex distinguishing total chromatic number \(\chi_{at}(G)\) of a graph \(G\) is the smallest integer \(k\) for which \(G\) admits a proper \(k\)-total coloring such that no pair of adjacent vertices are incident to the same set of colors. Snarks are connected bridgeless cubic graphs with chromatic index \(4\). In this paper, we show that \(\chi_{at}(G) = 5\) for two infinite subfamilies of snarks, i.e., the Loupekhine snark and Blanusa snark of first and second kind. In addition, we give an adjacent vertex distinguishing total coloring using \(5\) colors for Watkins snark and Szekeres snark, respectively.