The Majorization Theorem and Signless Dirichlet Spectral Radius of Connected Graphs

Guang-Jun Zhang1, Dameng Deng2, Jie Zhang3
1 School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, P.R. China
2Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
3 School of Insurance and Research Institute for FTZ, Shanghai Finance University, Shanghai 201209, P.R. China

Abstract

Let \(D(G)\) denote the signless Dirichlet spectral radius of the graph \(G\) with at least a pendant vertex, and \(\pi_1\) and \(\pi_2\) be two nonincreasing unicyclic graphic degree sequences with the same frequency of number \(1\). In this paper, the signless Dirichlet spectral radius of connected graphs with a given degree sequence is studied. The results are used to prove a majorization theorem of unicyclic graphs. We prove that if \(\pi_1 \unrhd \pi_2\), then \(D(G_1) \leq D(G_2)\) with equality if and only if \(\pi_1 = \pi_2\), where \(G_1\) and \(G_2\) are the graphs with the largest signless Dirichlet spectral radius among all unicyclic graphs with degree sequences \(\pi_1\) and \(\pi_2\), respectively. Moreover, the graphs with the largest signless Dirichlet spectral radius among all unicyclic graphs with \(k\) pendant vertices are characterized.