In the paper, we show that the orientable genus of the generalized Petersen graph \(P(km, m)\) is at least \( \frac{km}{4} – \frac{m}{2}-\frac{km}{4m-4}+1\) if \(m\geq 4\) and \(k \geq 3\). We determine the orientable genera of \(P(3m, m)\), \(P(4k, 4)\), \(P(4m, m)\) if \(m \geq 4\), \(P(6m, m)\) if \(m \equiv 0 \pmod{2}\) and \(m \geq 6\), and so on.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.