Linkage is very important in Very Large Scale Integration (VLSI) physical design. In this paper, we mainly study the relationship between minors and linkages. Thomassen conjectured that every \((2k + 2)\)-connected graph is \(k\)-linked. For \(k \geq 4\), \(K_{3k-1}\) with \(k\) disjoint edges deleted is a counterexample to this conjecture, however, it is still open for \(k = 3\). Thomas and Wollan proved that every \(6\)-connected graph on \(n\) vertices with \(5n – 14\) edges is \(3\)-linked. Hence they obtain that every \(10\)-connected graph is \(3\)-linked. Chen et al. showed that every \(6\)-connected graph with \(K_{9}^-\) as a minor is \(3\)-linked, and every \(7\)-connected graph with \(K_{9}^-\) as a minor is \((2,2k-1)\)-linked. Using a similar method, we prove that every \(8\)-connected graph with \(K_{2k+3}^-\) as a minor is \(4\)-linked, and every \((2k + 1)\)-connected graph with \(K_{2k+3}^-\) as a minor is \((2,2k – 1)\)-linked. Our results extend Chen et al.’s conclusions, improve Thomas and Wollan’s results, and moreover, they give a class of graphs that satisfy Thomassen’s conjecture for \(k = 4\).
1970-2025 CP (Manitoba, Canada) unless otherwise stated.