A Study on Degree Characterization for Hamiltonian-Connected Graphs

Hsun Su1, Yuan-Kang Shih2, Shih-Yan Chen3, Shin-Shin Kao4
1 Department of Public Finance and Taxation, Takming University of Science and Technology, Taipei, Taiwan 11451, R.O.C.
2Intel NTU Connected Context Computing Center, National Taiwan University, Taipei, Taiwan 10617, R.O.C.
3Taipei Municipal Bai Ling Senior High School, Taipei, Taiwan 11167, R.O.C.
4Department of Applied Mathematics, Chung Yuan Christian University, Chung-Li City, Taiwan 82028, R.O.C.

Abstract

Consider any undirected and simple graph \(G = (V, E)\), where \(V\) and \(E\) denote the vertex set and the edge set of \(G\), respectively. Let \(|G| = |V| = n \geq 3\). The well-known Ore’s theorem states that if \(\deg_G(u) + \deg_G(v) \geq n + k\) holds for each pair of nonadjacent vertices \(u\) and \(v\) of \(G\), then \(G\) is traceable for \(k = -1\), Hamiltonian for \(k = 0\), and Hamiltonian-connected for \(k = 1\). In this paper, we investigate any graph \(G\) with \(\deg_G(u) + \deg_G(v) \geq n – 1\) for any nonadjacent vertex pair \(\{u,v\}\) of \(G\), in particular. We call it the \((*)\) condition. We derive four graph families, \(\mathcal{H}_i\), \(1 \leq i \leq 4\), and prove that all graphs satisfying \((*)\) are Hamiltonian-connected unless \(G \in \bigcup_{i=1}^{4} \mathcal{H}_i\). We also establish a comprehensive theorem for \(G\) satisfying \((*)\), which shows that \(G\) is traceable, Hamiltonian, pancyclic, or Hamiltonian-connected unless \(G\) belongs to different subsets of \(\{\mathcal{H}_i | 1 \leq i \leq 4\}\), respectively.