Constructions of \(H\)-Antimagic Graphs Using Smaller Edge-Antimagic Graphs

Dafik 1,2, Slamin 1,3, Dushyant Tanna4, Andre a Semanitovd-Fenovéikova5, Martin Bata5
1CGANT Research Group, University of Jember, Indonesia
2Department of Mathematics Education, FKIP, University of Jember, Indonesia
3Department of Information System, PSSI, University of Jember, Indonesia
4School of Mathematical and Physical Sciences, The University of Newcasile, Australia
5Department of Applied Mathematics and Informatics, Technical University, Kosice, Slovakia

Abstract

A simple graph \(G = (V, E)\) admits an \(H\)-covering if every edge in \(E\) belongs to at least one subgraph of \(G\) isomorphic to a given graph \(H\). An \((a, d)\)-\(H\)-antimagic labeling of \(G\) admitting an \(H\)-covering is a bijective function \(f : V \cup E \rightarrow \{1, 2, \ldots, |V| + |E|\}\) such that, for all subgraphs \(H’\) of \(G\) isomorphic to \(H\), the \(H’\)-weights, \(wt(H’) = \sum_{v \in V(H’)} f(v) + \sum_{e \in E(H’)} f(e)\), constitute an arithmetic progression with the initial term \(a\) and the common difference \(d\). Such a labeling is called super if \(f(V) = \{1, 2, \ldots, |V|\}\). In this paper, we study the existence of super \((a, d)\)-\(H\)-antimagic labelings for graph operation \(G ^ H\), where \(G\) is a (super) \((b, d^*)\)-edge-antimagic total graph and \(H\) is a connected graph of order at least \(3\).