The Chromatic Equivalence Class of Graph \(\psi_n^3({n-3,1})\)

Yaping Mao1, Chengfu Ye1, Hengzhe Li2, Shumin Zhang1
1 Department of Mathematics, Qinghai Normal University, Xining, Qinghai 810008, P.R. China
2College of Mathematics and Information Science. Henan Normal University, Xingxiang 453007 China

Abstract

Two graphs are defined to be adjointly equivalent if their complements are chromatically equivalent. Recently, we introduced a new invariant of a graph \(G\), denoted as \(R_5(G)\). Using this invariant and the properties of the adjoint polynomials, we completely determine the adjoint equivalence class of \(\psi_n^3({n-3,1})\). According to the relations between adjoint polynomial and chromatic polynomial, we also simultaneously determine the chromatic equivalence class of \(\psi_n^3({n-3,1})\).