In previous researches on classification problems, there are some similar results obtained between \(f\)-coloring and \(g_c\)-coloring. In this article, the author shows that there always are coincident classification results for a regular simple graph \(G\) when the \(f\)-core and the \(g_c\)-core of \(G\) are same and \(f(v) = g(v)\) for each vertex \(v\) in the \(f\)-core (the \(g_c\)-core) of \(G\). However, it is not always coincident for nonregular simple graphs under the same conditions. In addition, the author obtains some new results on the classification problem of \(f\)-colorings for regular graphs. Based on the coincident correlation mentioned above, new results on the classification problem of \(g_c\)-colorings for regular graphs are deduced.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.