Toughness for the Existence of \(k\)-Hamiltonian \([a, b]\)-Factors

Sizhong Zhou 1, Yang Xu 2, Fan Yang 1
1School of Mathematics and Physics, Jiangsu University of Science and Technology, Mengxi Road 2, Zhenjiang, Jiangsu 212003, P. R. China
2Department of Mathematics, Qingdao Agricultural University, Qingdao, Shandong 266109, P. R. China

Abstract

Let \(a\), \(b\), and \(k\) be three nonnegative integers with \(a \geq 2\) and \(b \geq a(k+1)+2\). A graph \(G\) is called a \(k\)-Hamiltonian graph if \(G – U\) contains a Hamiltonian cycle for every subset \(U \subseteq V(G)\) with \(|U| = k\). An \([a, b]\)-factor \(F\) of \(G\) is called a Hamiltonian \([a, b]\)-factor if \(F\) contains a Hamiltonian cycle. If \(G – U\) has a Hamiltonian \([a, b]\)-factor for every subset \(U \subseteq V(G)\) with \(|U| = k\), then we say that \(G\) admits a \(k\)-Hamiltonian \([a, b]\)-factor. Suppose that \(G\) is a \(k\)-Hamiltonian graph of order \(n\) with \(n \geq a+k+2\). In this paper, it is proved that \(G\) includes a \(k\)-Hamiltonian \([a, b]\)-factor if \(\delta(G) \geq a+k\) and \(t(G) \leq a-1+\frac{(a-1)(k+1)}{b-2}\).