Contents

\(q\)-Analogue of the Generalized Fibonacci and Lucas Polynomials

Adem ŞAHIN1
1Faculty of Education, Tokat Gaziosmanpa\c{s}a University, 60250 Tokat, Turkey

Abstract

In this article, we define \(q\)-generalized Fibonacci polynomials and \(q\)-generalized Lucas polynomials using \(q\)-binomial coefficient and obtain their recursive properties. In addition, we introduce generalized \(q\)-Fibonacci matrix and generalized \(q\)-Lucas matrix, then we derive their basic identities. We define \((k,q,t)\)-symmetric generalized Fibonacci matrix and \((k,q,t)\)-symmetric generalized Lucas matrix, then we give the Cholesky factorization of these matrices. Finally, we give determinantal and permanental representations of these new polynomial sequences.

Keywords: \(q\)-binomial coefficient, \(q\)-generalized Fibonacci polynomials, \(q\)-generalized Lucas polynomials, \(q\)-generalized Fibonacci matrix and \(q\)-generalized Lucas matrices

1. Introduction

MacHenry [1] defined generalized Fibonacci polynomials and generalized Lucas polynomials. The generalized Fibonacci polynomials and the generalized Lucas polynomials already have comprehensive representation properties. These polynomials are a general form of generalized bivariate Fibonacci and Lucas \(p\)-polynomials, ordinary Fibonacci, Lucas, Pell, Pell-Lucas and Perrin sequences, Chebyshev polynomials of the second kind, and the Tribonacci numbers, etc.

The generalized Fibonacci polynomials, \(F_{k,n}(t)\), and the generalized Lucas polynomials, \(G_{k,n}(t)\), are defined inductively by as follows: \[\begin{aligned} F_{k,0}(t)&=&1,\text{ }F_{k,n+1}(t)=t_{1}F_{k,n}(t)+\cdots +t_{k}F_{k,n-k+1}(t)(n>1), \\ \end{aligned}\] and \[\begin{aligned} G_{k,0}(t)&=&k,\text{ }G_{k,1}(t) =t_{1},\text{ }G_{k,n}(t)=G_{k-1,n}(t)(1% \leq n\leq k), \\ G_{k,n}(t) &=&t_{1}G_{k,n-1}(t)+\cdots +t_{k}G_{k,n-k}(t)(n>k), \end{aligned}\] where the vector \(t=(t_{1},t_{2},\ldots ,t_{k})\) and \(t_{i}\) \((1\leq i\leq k)\) are constant coefficients of the core polynomial \[P(x;t_{1},t_{2},\ldots ,t_{k})=x^{k}-t_{1}x^{k-1}-\cdots -t_{k}.\]

In [2], authors gave explicit formula for the \(F_{k,n}(t)\) and \(% G_{k,n}(t)\) as follows: \[F_{k,n}(t)=\sum\limits\limits_{a\vdash n}\binom{|a|}{a_{1,\ldots ,}a_{k}}% t_{1}^{a_{1}}\ldots t_{k}^{a_{k}}, \label{fibbin}\tag{1}\] \[G_{k,n}(t)=\sum\limits\limits_{a\vdash n}\frac{n}{|a|}\binom{|a|}{a_{1,\ldots ,}a_{k}}t_{1}^{a_{1}}\ldots t_{k}^{a_{k}}. \label{lucbin}\]

The notations \(a\vdash n\) and \(|a|\) are used instead of \(\sum\limits% \limits_{j=1}^{k}ja_{j}=n\) and \(\sum\limits\limits_{j=1}^{k}a_{j},\) respectively.

In addition, in [2, 3, 4, 5, 6], the authors studied algebraic properties of these polynomials.

On the other hand, there exists several different \(q\)-analogues of the Fibonacci-type sequences, see [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. For example, Cigler [14] defined \(q\)-Fibonacci polynomials (\(F_{n,q}(x,s)\)) and \(q\)-Lucas polynomials (\(L_{n,q}(x,s)\)) as follows: \[\begin{aligned} F_{n}(x,s) &=&\sum\limits_{k=0}^{\left\lfloor \frac{n-1}{2}\right\rfloor }\left[ \begin{array}{c} n-k-1 \\ k% \end{array}% \right] q^{\binom{k+1}{2}}x^{n-1-2k}s^{k}, \\ \text{ }L_{n}(x,s) &=&\sum\limits_{i=0}^{\left\lfloor \frac{n}{2}\right\rfloor }% \frac{\left[ n\right] }{\left[ n-i\right] }\left[ \begin{array}{c} n-i \\ i% \end{array}% \right] q^{\binom{i}{2}}x^{n-2i}s^{i}. \end{aligned}\]

The \(q\)-binomial coefficient is defined as: \[{n \brack k}_q:=\frac{(q;q)_n}{(q;q)_k(q;q_{n-k})}= \frac{ [n]_q!}{ [k]_q! [n-k]_q!},\] with \((a;q)_n:=\prod\limits_{j=0}^{n-1}(1-aq^j)\), \(\lbrack n]_{q}=1+q+\cdots +q^{n-1}\) and \(\lbrack n]_{q}!=[1]_{q}[2]_{q}\cdots \lbrack n]_{q}\).

Many researchers have studied matrices whose elements are binomial coefficients, Fibonacci-type sequences and \(q\)-binomial coefficients, see [18, 19, 20, 21, 22, 23, 24, 25]. Lee et al. [21] defined \(% n\times n\) \(k\)-Fibonacci matrix \({\mathcal{F}}% (k)_{n}=[f(k)_{i,j}]_{i,j=1,2,…,n}\) as: \[f(k)_{i,j}=\left\{ \begin{array}{ll} f_{k,i-j+k-1}, & \text{if }i-j+1\geq 0, \\ 0, & \text{otherwise},% \end{array}% \right.\] where \(f_{k,n}\) \(n\)th \(k\)-Fibonacci numbers defined by Miles in [26]. The \({\mathcal{F}}(k)_{n}^{-1}=[f_{i,j}^{\imath }]\) was given as follows: \[f_{i,j}^{\imath }=\left\{ \begin{array}{ll} 1, & \text{if }i=j \\ -1, & \text{if }i-k\leq j\leq i-1 \\ 0, & \text{otherwise.}% \end{array}% \right.\] Lee et al. [21] also defined \(n\times n\) \(k\)-symmetric Fibonacci matrix \({\mathcal{Q}}(k)_{n}=[q(k)_{i,j}]\) as follows: \[q(k)_{i,j}=q(k)_{j,i}=\left\{ \begin{array}{ll} \sum\limits\limits_{l=1}^{k}q(k)_{i,i-l}+f_{k,k-1}, & \text{if }i=j, \\ \sum\limits\limits_{l=1}^{k}q(k)_{i,j-l}, & \text{if }i+1\leq j,% \end{array}% \right.\] and obtained the Cholesky factorization of \({\mathcal{Q}}(k)_{n}\) as follows: \[{\mathcal{Q}}(k)_{n}={\mathcal{F}}(k)_{n}({\mathcal{F}}(k)_{n})^{T}.\]

In addition, many researchers have studied determinantal and permanental representations of Fibonacci-type sequences and polynomials. More examples can be found in [3, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37].

2. \(q\)-analogue of the Generalized Fibonacci Polynomials and Generalized Lucas Polynomials

In this section, we define two families of polynomials, the \(q\)-generalized Fibonacci polynomial and the \(q\)-generalized Lucas polynomial using \(q\) -binomials and obtain properties of these polynomials. In the following two definitions, the summation takes place over all integers \(% c_{1},c_{2},…,c_{k}\) such that \(\sum\limits\limits_{j=1}^{k}jc_{j}=n\), and \(% c=\sum\limits\limits_{j=1}^{k}c_{j}.\)

Definition 1.For any integers \(n\geq 0\), the \(q\)-generalized Fibonacci polynomial, \(% F_{k,n}(t;q)\), is defined by \[F_{k,n}(t;q):=\sum\limits \frac{[c]_{q}!}{[c_{1}]_{q}![c_{2}]_{q}!…[c_{k}]_{q}!}% t_{1}^{c_{1}}\ldots t_{k}^{c_{k}}.\]

In particular, if we take \(q=1\), we obtain the \(F_{k,n}(t;1):=F_{k,n}(t)\).

The first few \(F_{k,n}(t;q)\) are \[1,\text{ }t_{1},\text{ }t_{2}+t_{1}^{2},\text{ }% t_{3}+(1+q)t_{1}t_{2}+t_{1}^{3},\text{ }% t_{4}+(1+q)t_{1}t_{3}+t_{2}^{2}+t_{1}^{4}+(1+q+q^{2})t_{1}^{2}t_{2},\ldots\,.\]

Definition 2. For any integers \(n\geq 0\), the \(q\)-generalized Lucas polynomial, \(% L_{k,n}(t;q)\), is defined by \[L_{k,n}(t;q):=\sum\limits \frac{[n]_{q}([c]_{q}!)}{% [c]_{q}([c_{1}]_{q}![c_{2}]_{q}!…[c_{k}]_{q}!)}t_{1}^{c_{1}}\ldots t_{k}^{c_{k}}.\]

In particular, if we take \(q=1\), we obtain the \(L_{k,n}(t;1):=G_{k,n}(t)\).

The first few \(L_{k,n}(t;q)\) are \[_{q}, t_{1}, (1+q)t_{2}+t_{1}^{2}, (1+q+q^{2})t_{3}+(1+q+q^{2})t_{1}t_{2}+t_{1}^{3},\ldots\,.\] We need the following definitions and lemmas in our proofs.

Definition 3. \(\mathcal{S}_{k,n}\) is the sequence defined by \(\mathcal{S}_{k,0}=1,\) \(% \mathcal{S}_{k,1}=t_{1}\) and for \(n\geq 2\) \[\mathcal{S}_{k,n}=t_{1}\mathcal{S}_{k,n-1}+% \sum\limits_{j=1}^{n-1}(-1)^{n-j}F_{k,n-j+1}(t;q)\mathcal{S}_{k,j-1}. \label{efes}\tag{2}\]

The first few terms of \(\mathcal{S}_{k,n}\) are \[1,t_{1},\text{ }-t_{2},\text{ }t_{3}-t_{1}t_{2}+qt_{1}t_{2},\text{ }% -t_{4}+t_{1}t_{3}-qt_{1}t_{3}+qt_{1}^{2}t_{2}-q^{2}t_{1}^{2}t_{2},\dots\,.\]

Lemma 1. Let \(n\geq 1\) be an integer. Then \[F_{k,n}(t;q)=\sum\limits_{j=1}^{k}(-1)^{j+1}\mathcal{S}_{k,j}F_{k,n-j}(t;q). \label{efes2}\tag{3}\]

Proof. This is obvious from Eq. (2). ◻

Definition 4. \(\mathcal{T}_{k,n}\) is the sequence defined by \(\mathcal{T}_{k,0}=1,\) \(% \mathcal{T}_{k,1}=t_{1}\) and \(n\geq 2\) \[\mathcal{T}_{k,n}=t_{1}\mathcal{T}_{k,n-1}+% \sum\limits_{j=1}^{n-1}(-1)^{n-j}L_{k,n-j+1}(t;q)\mathcal{T}_{k,j-1}. \label{elet}\tag{4}\] The first few terms of \(\mathcal{T}_{k,n}\) are \[1,t_{1},-t_{2}-qt_{2},t_{3}+qt_{3}-t_{1}t_{2}-qt_{1}t_{2}+q^{2}t_{3}+q^{2}t_{1}t_{2},\ldots\,.\]

Lemma 2. Let \(n\geq 1\) be an integer. Then \[L_{k,n}(t;q)=\sum\limits_{j=1}^{k}(-1)^{j+1}\mathcal{T}_{k,j}L_{k,n-j}(t;q). \label{elet2}\]

Proof. This is obvious from Eq. (4). ◻

Theorem 1. Let \(F_{k,n}(t_{1},t_{2},\ldots ,t_{k})\) be the generalized Fibonacci polynomial and \(F_{k,n}(t;q)\) be the \(q\)-generalized Fibonacci polynomial, then \[F_{k,n}(t_{1},t_{2},\ldots ,t_{k};q)=F_{k,n}(\mathcal{S}_{k,1},-\mathcal{S}% _{k,2},\ldots ,(-1)^{k+1}\mathcal{S}_{k,k}).\]

Proof. We proceed by induction on \(n\). The result clearly holds for \(n=1,\) since \(F_{k,1}(t;q)=t_{1}=\mathcal{S}_{k,1}=F_{k,1}(\mathcal{S}_{k,1},-% \mathcal{S}_{k,2},\ldots ,(-1)^{k+1}\mathcal{S}_{k,k})\). Now suppose that the result is true for all positive integers less than or equal to \(n\). We prove it for (\(n+1\)). In fact, by the definition of generalized Fibonacci polynomials for the vector \(\mathcal{S}=(\mathcal{S}_{k,1},-\mathcal{S}% _{k,2},\ldots ,(-1)^{k+1}\mathcal{S}_{k,k})\), we have

\[F_{k,n+1}(\mathcal{S})=\mathcal{S}_{k,1}F_{k,n}(\mathcal{S})+\cdots +(-1)^{k+1}\mathcal{S}_{k,k}F_{k,n-k+1}(\mathcal{S}).\] From the hypothesis of induction, we obtain \[F_{k,n+1}(\mathcal{S})=\mathcal{S}_{k,1}F_{k,n}(t;q)+\cdots +(-1)^{k+1}% \mathcal{S}_{k,k}F_{k,n-k+1}(t;q).\] Thus, we obtain \[F_{k,n+1}(\mathcal{S})=F_{k,n+1}(t;q),\] using Eq. (3). ◻

Theorem 2. Let \(F_{k,n}(t_{1},t_{2},\ldots ,t_{k})\) be the generalized Fibonacci polynomial and \(L_{k,n}(t;q)\) be the \(q\)-generalized Lucas polynomial, then \[L_{k,n}(t_{1},t_{2},\ldots ,t_{k};q)=F_{k,n}(\mathcal{T}_{k,1},-\mathcal{T}% _{k,2},\ldots ,(-1)^{k+1}\mathcal{T}_{k,k}).\]

Proof. The proof runs like in Theorem 1. ◻

Corollary 1. \[F_{k,n}(t;q):=\sum\limits \frac{c!}{c_{1}!…c_{k}!}\mathcal{S}_{k,1}^{c_{1}}(-% \mathcal{S}_{k,2}^{c_{2}})\ldots ((-1)^{k}\mathcal{S}% _{k,k-1}^{c_{k-1}})((-1)^{k+1}\mathcal{S}_{k,k}^{c_{k}})\,.\]

Proof. This is obvious from Eq. (1) and Theorem 1. ◻

Corollary 2. \[L_{k,n}(t;q):=\sum\limits \frac{c!}{c_{1}!…c_{k}!}\mathcal{T}_{k,1}^{c_{1}}(-% \mathcal{T}_{k,2}^{c_{2}})\ldots ((-1)^{k}\mathcal{T}% _{k,k-1}^{c_{k-1}})((-1)^{k+1}\mathcal{T}_{k,k}^{c_{k}})\,.\]

Proof. This is obvious from Eq. (1) and Theorem 2. ◻

Corollary 3. Let \(y_{k,n}=(-1)^{n+1}\mathcal{T}_{k,n}\) for \(q=1,\) \(% F_{k,n}(t_{1},t_{2},\ldots ,t_{k})\) be the generalized Fibonacci polynomial and \(G_{k,n}(t_{1},t_{2},\ldots ,t_{k})\) be the generalized Lucas polynomial, then \[G_{k,n}(t_{1},t_{2},\ldots ,t_{k})=F_{k,n}(y_{k,1},y_{k,2},\ldots ,y_{k,k}).\]

Proof. If we rewrite Theorem 2. for \(q=1,\) we obtain \[L_{k,n}(t;1)=F_{k,n}(y_{k,1},\ldots ,y_{k,k}).\] Further, this is obvious from the definitions of \(L_{k,n}(t;q)\) and \(% G_{k,n}(t)\) that \(L_{k,n}(t;1)=G_{k,n}(t).\) Therefore, we obtain the desired result. ◻

There have been several studies on the generalized Fibonacci polynomials and the generalized Lucas polynomials and the relationship between them. Corollary 3. gives a new relation between these polynomials. Using this corollary, different results can be obtained. From Propositions \(% 1,3,4\) and Lemma \(3\) in [5], we can give the following corollaries.

Corollary 4. Let \(y_{k,n}=(-1)^{n+1}\mathcal{T}_{k,n}\) for \(q=1\) and \(% F_{k,n}(t_{1},t_{2},\ldots ,t_{k})\) be the generalized Fibonacci polynomial, then \[F_{k,n}(y_{k,1},y_{k,2},\ldots ,y_{k,k})=-t_{k-1}F_{k,n-k+1}(t)-\cdots -(k-1)t_{1}F_{k,n-1}(t)+kF_{k,n}(t).\]

Corollary 5. Let \(y_{k,n}=(-1)^{n+1}\mathcal{T}_{k,n}\) for \(q=1\) and \(% F_{k,n}(t_{1},t_{2},\ldots ,t_{k})\) be the generalized Fibonacci polynomial, then \[F_{k,n}(y_{k,1},y_{k,2},\ldots ,y_{k,k})=\sum\limits\limits_{a\vdash n}n(-1)^{a+1}% \binom{|a| -1}{a_{1,\ldots ,}a_{k}}F_{k,1}^{a_{1}}\ldots F_{k,k}^{a_{k}}.\]

Corollary 6. Let \(y_{k,n}=(-1)^{n+1}\mathcal{T}_{k,n}\) for \(q=1\) and \(% F_{k,n}(t_{1},t_{2},\ldots ,t_{k})\) be the generalized Fibonacci polynomial, then \[\frac{\partial F_{k,n}(y_{k,1},y_{k,2},\ldots ,y_{k,k})}{\partial t_{i}}% =nF_{k,n-i}(t_{1},t_{2},\ldots ,t_{k}).\]

Example 1. We give a companion matrix \(C_{(k)}\) and obtain \(C_{(k)}^{\infty }\) using the method in [5] as follows:

\[C_{(k)}=\left[ \begin{array}{ccccc} 0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \\ (-1)^{k+1}\mathcal{S}_{k} & (-1)^{k}\mathcal{S}_{k-1} & (-1)^{k-1}\mathcal{S}% _{k-2} & \ldots & \mathcal{S}_{1}% \end{array}% \right]\,.\] In particular, if we take \(q=1\), we obtain the companion matrix \(A\) in [5]. We let the companion matrix operate on its last row vector on the right and append the image vector to the companion matrix as a new last row. We repeat this process, obtaining a matrix with infinitely many rows. Note that \(C_{(k)}\) is invertible if and only if \(\mathcal{S}_{k}\neq 0\). Assuming that \(\mathcal{S}_{k}\neq 0\), we can also extend the matrix from the top row upward by operating on the top row with \(C_{(k)}^{-1}\), obtaining a doubly infinite matrix, that is, one with infinitely many rows in either direction and \(k\)-columns. We call this the infinite companion matrix \(C_{(k)}^{\infty }\). If we take \(q=1\), we obtain the companion matrix \(A^{\infty }\) in [5]. It is obvious that, the right hand column of \(% C_{(k)}^{\infty }\) in the positive direction is \(F_{k,n}(t;q).\)

3. \(q\)-analogue of the Generalized Fibonacci and Lucas Matrices

In this section, we introduce the generalized \(q\)-Fibonacci matrix and generalized \(q\)-Lucas matrix, then we find their inverse matrices and give the Cholesky factorization of \((k,q,t)\)-symmetric generalized Fibonacci and Lucas matrices. These results generalize the \(k\)-Fibonacci matrix and its inverse and \(k\)-symmetric Fibonacci matrix in [21](\(q=t_{i}=1)\).

Definition 5. The generalized \(q\)-Fibonacci matrix \(\mathcal{F}% _{k,n}^{(t;q)}:=[f_{i,j}]_{0\leq i,j\leq n}\) is defined by \[f_{i,j}=% \begin{cases} F_{k,i-j}(t;q), & \text{if}\ i\geq j, \\ 0, & \mbox{otherwise.}% \end{cases}%\]

Example 2. The generalized \(q\)-Fibonacci matrix for \(n=k=4\) is \[\mathcal{F}_{4,4}^{(t;q)}=% \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ t_{1} & 1 & 0 & 0 & 0 \\ t_{2}+t_{1}^{2} & t_{1} & 1 & 0 & 0 \\ t_{3}+(1+q)t_{1}t_{2}+t_{1}^{3} & t_{2}+t_{1}^{2} & t_{1} & 1 & 0 \\ (t_{4}+(1+q)t_{1}t_{3}+t_{2}^{2}+t_{1}^{4} & & & & \\ +(1+q+q^{2})t_{1}^{2}t_{2}) & t_{3}+(1+q)t_{1}t_{2}+t_{1}^{3} & t_{2}+t_{1}^{2} & t_{1} & 1% \end{pmatrix}\,.\]

In particular, if we take \(q=t_{i}=1\), we obtain the equation \(\mathcal{F}% _{k,n}^{(1;1)}=\mathcal{F}(k)_{n}\).

Definition 6. The \(n\times n\) Hessenberg matrix \(\mathcal{D}_{k,n}:=[d_{i,j}]_{1\leq i,j\leq n}\) is defined by \[d_{i,j}=% \begin{cases} F_{k,i-j+1}(t;q), & \text{if}\ i\geq j, \\ 1, & \text{if }i+1=j, \\ 0, & \mbox{otherwise.}% \end{cases}%\]

Lemma 3. [28] Let \(A_{n}\) be an \(n\times n\) lower Hessenberg matrix for all \(n\geq 1\) and define \(\det (A_{0})=1\). Then, \(\det (A_{1})=a_{11}\) and for \(n\geq 2\) \[\det (A_{n})=a_{n,n}\det (A_{n-1})+\sum\limits\limits_{r=1}^{n-1}[(-1)^{n-r}a_{n,r}(\prod\limits% \limits_{j=r}^{n-1}a_{j,j+1})\det (A_{r-1})].\]

Lemma 4. Let \(n\geq 1\) be an integer. Then \(\det (\mathcal{D}_{k,n})=% \mathcal{S}_{k,n}.\)

Proof. We proceed by induction on \(n\). The result clearly holds for \(n=1\). Now, suppose that the result is true for all positive integers less than or equal to \(n\). We prove it for \((n+1)\). In fact, using Lemma 3 we have

\[\begin{aligned} \det (\mathcal{D}_{k,n+1}) &=&d_{n+1,n+1}\det (\mathcal{D}% _{k,n})+\sum\limits\limits_{i=1}^{n}\left[ (-1)^{n+1-i}d_{n+1,i}\prod\limits% \limits_{j=i}^{n}d_{j,j+1}\det (\mathcal{D}_{k,i-1})\right] \\ &=&t_{1}\det (\mathcal{D}_{k,n})+\sum\limits\limits_{i=1}^{n}\left[ (-1)^{n+1-i}F_{k,n-i+2}(t;q)\det (\mathcal{D}_{k,i-1})\right] \\ &=&t_{1}\mathcal{S}_{k,n}+\sum\limits\limits_{i=1}^{n}\left[ (-1)^{n+1-i}F_{k,n-i+2}(t;q)\mathcal{S}_{k,i-1}\right] =\mathcal{S}_{k,n+1}. \end{aligned}\]

Theorem 3. Let \(\mathcal{F}_{k,n}^{(t;q)}\) be the \((n+1)\times (n+1)\) lower triangular generalized \(q\)-Fibonacci matrix. Then, we have \[(\mathcal{F}_{k,n}^{(t;q)})^{-1}=[b_{i,j}]=\left\{ \begin{array}{cc} (-1)^{i-j}\mathcal{S}_{k,i-j}, & \text{if}\ \ i-j\geq 0, \\ 0, & \text{otherwise.}% \end{array}% \right.\]

Proof. Note that it suffices to prove that \(\mathcal{F}_{k,n}^{(t;q)}(\mathcal{F}% _{k,n}^{(t;q)})^{-1}=I_{n+1}\). For \(i>j\geq 0\), we have \[\begin{aligned} \sum\limits_{k=0}^{n}f_{i,k}b_{k,j} &=&\sum\limits_{k=j}^{i}f_{i,k}b_{k,j} \\ &=&F_{k,i-j}(t;q)\mathcal{S}_{k,0}-F_{k,i-j-1}(t;q)\mathcal{S}_{k,1}+\cdots +F_{k,0}(t;q)(-1)^{i-j}\mathcal{S}_{k,i-j} \end{aligned}\] and we know \[F_{k,i-j}(t;q)=\sum\limits_{s=1}^{k}(-1)^{j+1}\mathcal{S}_{k,s}F_{k,i-j-s}(t;q)\] from Eq. (2). Therefore, we obtain \(% \sum\limits_{k=0}^{n}f_{i,k}b_{k,j}=0\) for \(i>j\geq 0.\) It is obvious that \(% \sum\limits_{k=0}^{n}f_{i,k}b_{k,j}=0\) for \(i-j<0\) and \(% \sum\limits_{k=0}^{n}f_{i,k}b_{k,j}=f_{i,i}b_{i,j}=\) \(\mathcal{S}% _{k,0}F_{k,0}(t;q)=1\) for \(i=j\) which implies that \(\mathcal{F}% _{k,n}^{(t;q)}(\mathcal{F}_{k,n}^{(t;q)})^{-1}=I_{n+1},\) as desired. ◻

In particular, if we take \(q=t_{i}=1\), we obtain the inverse matrix of the \(% k\)-Fibonacci matrix[21].

Definition 7. The generalized \(q\)-Lucas matrix \(\mathcal{L}_{k,n}^{(t;q)}:=[l_{i,j}]_{0% \leq i,j\leq n}\) is defined by \[l_{i,j}=% \begin{cases} L_{k,i-j}(t;q), & \text{if}\ i>j, \\ 1 & \text{if }i=j, \\ 0, & \mbox{otherwise.}% \end{cases}%\]

For example, \[\mathcal{L}_{3,3}^{(t;q)}= \begin{pmatrix} 1 & 0 & 0 & 0 \\ t_{1} & 1 & 0 & 0 \\ (1+q)t_{2}+t_{1}^{2} & t_{1} & 1 & 0 \\ (1+q+q^{2})t_{3}+(1+q+q^{2})t_{1}t_{2}+t_{1}^{3} & (1+q)t_{2}+t_{1}^{2} & t_{1} & 1% \end{pmatrix}% .\]

Definition 8. The \(n\times n\) Hessenberg matrix \(\mathcal{E}_{k,n}:=[e_{i,j}]_{1\leq i,j\leq n}\) is defined by \[e_{i,j}=% \begin{cases} L_{k,i-j+1}(t;q), & \text{if}\ i\geq j, \\ 1, & \text{if}\ i+1=j, \\ 0, & \mbox{otherwise.}% \end{cases}%\]

Lemma 5. Let \(n\geq 1\) be an integer. Then \[\det (\mathcal{E}_{k,n})=\mathcal{T}_{k,n}.\]

Proof. The proof runs like in Lemma 4. ◻

Theorem 4. Let \(\mathcal{L}_{k,n}^{(t;q)}\) be the \((n+1)\times (n+1)\) lower triangular generalized \(q\)-Lucas matrix. Then, we have \[(\mathcal{L}_{k,n}^{(t;q)})^{-1}=[c_{i,j}]=\left\{ \begin{array}{ll} (-1)^{i-j}\mathcal{T}_{k,i-j}, & \text{if }i-j>0, \\ 0, & \text{otherwise.}% \end{array}% \right.\]

Proof. The proof runs like in Theorem 3. ◻

Definition 9. Let \(n\geq 1\) be an integer, \((k,q,t)\)-symmetric generalized Fibonacci matrix \({\mathcal{Q}}_{k,n}^{(t,q)}:=[m_{i,j}]_{0\leq i,j\leq n}\) is defined by \[m_{i,j}=\left\{ \begin{array}{ll} \sum\limits\limits_{l=0}^{i}F_{k,l}(t;q)F_{k,l}(t;q), & \text{if }i=j, \\ \sum\limits\limits_{l=0}^{i}F_{k,i-l}(t;q)F_{k,j-l}(t;q), & \text{if }i+1\leq j.% \end{array}% \right.\]

Theorem 5. The Cholesky factorization of \({\mathcal{Q}}% _{k,n}^{(t,q)}\) is given by \[{\mathcal{Q}}_{k,n}^{(t,q)}=\mathcal{F}_{k,n}^{(t;q)}(\mathcal{F}% _{k,n}^{(t;q)})^{T}\]

Proof. Note that it suffices to prove that \((\mathcal{F}_{k,n}^{(t;q)})^{-1}{% \mathcal{Q}}_{k,n}^{(t,q)}=(\mathcal{F}_{k,n}^{(t;q)})^{T}.\) We take \(% \mathcal{F}_{k,n}^{(t;q)})^{-1}=\left[ b_{i,j}\right]\), \({\mathcal{Q}}% _{k,n}^{(t,q)}=\left[ m_{i,j}\right]\) and \((\mathcal{F}_{k,n}^{(t;q)})^{T}=% \left[ \overline{f}_{i,j}\right]\) and obtain \(\sum\limits\limits_{s=1}^{k}b_{i,s}\)\(m_{s,j}\) for \(i,j=0,1,2,…,k.\) For \(i=j=n\), \[ \overline{f}_{i,i}=\sum\limits\limits_{s=1}^{k}b_{i,s}m_{s,i}\] \[ =(-1)^{n}\mathcal{S} _{k,n}F_{k,n}(t;q)+ (-1)^{n-1}\mathcal{S} _{k,n-1}[F_{k,1}(t;q)F_{k,n}(t;q)+F_{k,0}(t;q)F_{k,n-1}(t;q)]+\cdots \] \[ -\mathcal{S}_{k,1}[F_{k,n-1}(t;q)F_{k,n}(t;q)+\cdots +F_{k,0}(t;q)F_{k,1}(t;q)] \] \[ +\mathcal{S}_{k,0}[F_{k,n}(t;q)F_{k,n}(t;q)+\cdots +F_{k,0}(t;q)F_{k,0}(t;q)] \] \[ F_{k,n}(t;q)[(-1)^{n}\mathcal{S}_{k,n}+(-1)^{n-1}\mathcal{S}% _{k,n-1}F_{k,1}(t;q)+\cdots +\mathcal{S}_{k,0}F_{k,n}(t;q)] \] \[ +F_{k,n-1}(t;q)[(-1)^{n-1}\mathcal{S}_{k,n-1}+\cdots +\mathcal{S} _{k,0}F_{k,n-1}(t;q)]+\cdots \] \[ +F_{k,1}(t;q)[-\mathcal{S}_{k,1}+\mathcal{S}_{k,0}F_{k,1}(t;q)]+1. \] We know \((-1)^{n}\mathcal{S}_{k,n}+(-1)^{n-1}\mathcal{S}% _{k,n-1}F_{k,1}(t;q)+\cdots +\mathcal{S}_{k,0}F_{k,n}(t;q)=0\) from the definition of \(\mathcal{S}_{k,n},\) so \(\overline{f}_{i,i}=1\) for \(% i=0,1,2,…,k.\) For \(i>j,\) \[ \sum\limits\limits_{s=1}^{k}b_{i,s}m_{s,i} =(-1)^{i}\mathcal{S}_{k,i}F_{k,j}(t;q)+ (-1)^{i-1}\mathcal{S}% _{k,i-1}[F_{k,1}(t;q)F_{k,j}(t;q)+F_{k,0}(t;q)F_{k,j-1}(t;q)] \] \[ +(-1)^{i-2}\mathcal{S}_{k,i-2}[F_{k,2}(t;q)F_{k,j}(t;q)+\cdots +F_{k,0}(t;q)F_{k,j-2}(t;q)] \] \[ +\cdots +\mathcal{S}_{k,0}[F_{k,i}(t;q)F_{k,j}(t;q)+\cdots +F_{k,i-j}(t;q)F_{k,0}(t;q)] \] \[ F_{k,j}(t;q)[(-1)^{i}\mathcal{S}_{k,i}+(-1)^{i-1}\mathcal{S}% _{k,i-1}F_{k,1}(t;q)+\cdots +\mathcal{S}_{k,0}F_{k,i}(t;q)] \] \[ +F_{k,j-1}(t;q)[(-1)^{i-1}\mathcal{S}_{k,i-1}+(-1)^{i-2}\mathcal{S}% _{k,i-2}F_{k,1}(t;q)+\cdots +\mathcal{S}_{k,0}F_{k,i-1}(t;q)]+\cdots \] \[+F_{k,0}(t;q)[(-1)^{i-j}\mathcal{S}_{k,i-j}+(-1)^{i-j-1}\mathcal{S}% _{k,i-j-1}F_{k,1}(t;q)+\cdots +\mathcal{S}_{k,0}F_{k,i-j}(t;q)]. \] We know \((-1)^{n}\mathcal{S}_{k,n}+(-1)^{n-1}\mathcal{S}% _{k,n-1}F_{k,1}(t;q)+\cdots +\mathcal{S}_{k,0}F_{k,n}(t;q)=0\) from the definition of \(\mathcal{S}_{k,n},\) so \(\overline{f}_{i,i}=0\) for \(% i=0,1,2,…,k.\) Finally, for \(i<j,\) equation \(\overline{f}% _{i,i}=F_{k,j-i}(t;q)\) is shown in a similar way. ◻

Definition 10. Let \(n\geq 1\) be an integer. Then \((k,q,t)\)-symmetric generalized Lucas matrix \({\mathcal{P}}_{k,n}^{(t,q)}:=[n_{i,j}]_{0\leq i,j\leq n}\) is defined by \[n_{i,j}=\left\{ \begin{array}{ll} \sum\limits\limits_{l=0}^{i}L_{k,l}(t;q)L_{k,l}(t;q), & \text{if }i=j, \\ \sum\limits\limits_{l=0}^{i}L_{k,i-l}(t;q)L_{k,j-l}(t;q), & \text{if }i+1\leq j.% \end{array}% \right.\]

Theorem 6. The Cholesky factorization of \({\mathcal{P}}_{k,n}^{(t,q)}\) is given by \[{\mathcal{P}}_{k,n}^{(t,q)}=\mathcal{L}_{k,n}^{(t;q)}(\mathcal{L}% _{k,n}^{(t;q)})^{T}\]

Proof. The proof runs like in Theorem 5. ◻

4. The Determinantal and Permanental Representations

In this section, we obtain any term of \(q\)-generalized Fibonacci and Lucas polynomials using determinants and permanents of Hessenberg matrices.

Theorem 7. Let \(n\geq 1\) be an integer\(,\) \(F_{k,n}(t;q)\) be the \(n\)th \(q\) -generalized Fibonacci polynomial and \(% _{-}U_{k,n}^{(q)}=[u_{i,j}]_{i,j=1,2,…,n}\) be the \(n\times n\) Hessenberg matrix defined as \[u_{ij}=% \begin{cases} (-1)^{i-j}\mathcal{S}_{k,i-j+1}, & \text{if}\ i-j\geq 0, \\ -1, & \text{if}\ i+1=j, \\ 0, & \text{otherwise.}% \end{cases} \label{haen}\] Then, \(\det (_{-}U_{k,n}^{(q)})=F_{k,n}(t;q). \label{dethes1}\)

Proof. We proceed by induction on \(m\). The result clearly holds for \(m=1,\) since \(% \det (_{-}U_{k,1}^{(q)})=\mathcal{S}_{k,1}=t_{1}=F_{k,1}(t;q)\). Now, suppose that the result is true for all positive integers less than or equal to \(m\). We prove it for \((m+1)\). In fact, using Lemma 3 we have \[ \det (_{-}U_{k,m+1}^{(q)}) =u_{m+1,m+1}\det (_{-}U_{k,m}^{(q)})+\sum\limits\limits_{i=1}^{m}\left[ (-1)^{m+1-i}u_{m+1,i}\prod\limits\limits_{j=i}^{m}u_{j,j+1}\det (_{-}U_{k,i-1}^{(q)})\right] \] \[=t_{1}\det (_{-}U_{k,m}^{(q)})+\sum\limits\limits_{i=1}^{m-k+1}\left[ (-1)^{m+1-i}u_{m+1,i}\prod\limits\limits_{j=i}^{m}u_{j,j+1}\det (_{-}U_{k,i-1}^{(q)})\right] \] \[+\sum\limits\limits_{i=m-k+2}^{m}\left[ (-1)^{m+1-i}u_{m+1,i}\prod\limits% \limits_{j=i}^{m}u_{j,j+1}\det (_{-}U_{k,i-1}^{(q)})\right] \] \[=t_{1}\det (_{-}U_{k,m}^{(q)})+\sum\limits\limits_{i=m-k+2}^{m}\left[ u_{m+1,i}\det (_{-}U_{k,i-1}^{(q)})\right] \] \[=t_{1}\det (_{-}U_{k,m}^{(q)})-\mathcal{S}_{k,2}\det (_{-}U_{k,m-1}^{(q)})+\cdots +(-1)^{k-1}\mathcal{S}_{k}\det (_{-}U_{k,m-k+1}^{(q)}). \] From the hypothesis of induction and Eq. (3), we obtain \[\det (_{-}U_{k,m+1}^{(q)})=\sum\limits_{j=1}^{k}(-1)^{j-1}\mathcal{S}% _{k,j}F_{k,m+1-j}(t;q)=F_{k,m+1}(t;q).\] Therefore, \(\det (_{-}U_{k,n}^{(q)})=F_{k,n}(t;q)\) holds for all positive integers \(n\). ◻

Theorem 8. Let \(n\geq 1\) be an integer\(,\) \(F_{k,n}(t;q)\) be the \(n\)th \(q\) -generalized Fibonacci polynomial and \(% _{+}V_{k,n}^{(q)}=[v_{s,t}]_{i,j=1,2,…,n}\) be the \(n\times n\) Hessenberg matrix defined as \[v_{s,t}=% \begin{cases} i^{3(s-t)}\mathcal{S}_{k,i-j+1}, & \text{if}\ s-t\geq 0, \\ i, & \text{if}\ s+1=t, \\ 0, & \text{otherwise.}% \end{cases}%\] Then, \(\det (_{+}V_{k,n}^{(q)})=F_{k,n}(t;q).\)

Proof. Since the proof is similar to the proof of Theorem 7 using Lemma 3, we omit the details. ◻

Theorem 9. Let \(n\geq 1\) be an integer\(,\) \(L_{k,n}(t;q)\) be the \(n\) th \(q\)-generalized Lucas polynomial, \(% _{-}W_{k,n}^{(q)}=[w_{i,j}]_{i,j=1,2,…,n}\) and \(% _{+}Y_{k,n}^{(q)}=[y_{i,j}]_{i,j=1,2,…,n}\) be the \(n\times n\) Hessenberg matrices defined as \[w_{i,j}=% \begin{cases} (-1)^{i-j}\mathcal{T}_{k,i-j+1}, & \text{if}\ i-j\geq 0, \\ -1, & \text{if}\ i+1=j, \\ 0, & \text{otherwise},% \end{cases}% \quad\text{ and }\quad y_{s,t}=% \begin{cases} i^{3(s-t)}\mathcal{T}_{k,i-j+1}, & \text{if}\ s-t\geq 0, \\ i, & \text{if}\ s+1=t, \\ 0, & \text{otherwise}.% \end{cases}%\] Then, \(\det (_{-}W_{k,n}^{(q)})=\det (_{+}Y_{k,n}^{(q)})=L_{k,n}(t;q).\)

Proof. Since the proof is similar to the proof of Theorem 7 using Lemma 3, we omit the details. ◻

The permanent of an \(n\)-square matrix is defined by per\(% A=\sum\limits_{\sigma \in S_{n}}\prod\limits_{i=1}^{n}a_{i\sigma (i)},\) where the summation extends over all permutations \(\sigma\) of the symmetric group \(% S_{n}\) (cf. [38]). There is a relation between permanent and determinant of a Hessenberg matrix (cf. [33, 39]). Then, it is clear that the following corollaries hold.

Corollary 7. Let \(n\geq 1\) be an integer\(,\) \(F_{k,n}(t;q)\) be the \(n\)th \(q\) -generalized Fibonacci polynomial, \(_{+}U_{k,n}^{(q)}=[\overline{u}% _{i,j}]_{i,j=1,2,…,n}\) and \(_{-}V_{k,n}^{(q)}=[\overline{v}% _{s,t}]_{s,t=1,2,…,n}\) be the \(n\times n\) Hessenberg matrix defined as \[\overline{u}_{ij}=% \begin{cases} (-1)^{i-j}\mathcal{S}_{k,i-j+1}, & \text{if}\ i-j\geq 0, \\ 1, & \text{if}\ i+1=j, \\ 0, & \text{otherwise}% \end{cases}% \quad \text{ and }\quad \overline{v}_{s,t}=% \begin{cases} i^{3(s-t)}\mathcal{S}_{k,i-j+1}, & \text{if}\ s-t\geq 0, \\ -i, & \text{if}\ s+1=t, \\ 0, & \text{otherwise},% \end{cases}%\] where \(i=\sqrt{-1}\). Then, \(\text{per}(_{+}U_{k,n}^{(q)})=\text{per}% (_{-}V_{k,n}^{(q)})=F_{k,n}(t;q).\)

Corollary 8. Let \(n\geq 1\) be an integer\(,\) \(L_{k,n}(t;q)\) be the \(n\)th \(q\)-generalized Lucas polynomial, \(_{+}W_{k,n}^{(q)}=[\overline{w}_{i,j}]_{i,j=1,2,…,n}\) and \(_{-}Y_{k,n}^{(q)}=[\overline{y}_{s,t}]_{i,j=1,2,…,n}\) be the \(n\times n\) Hessenberg matrices defined as \[\overline{w}_{i,j}=% \begin{cases} (-1)^{i-j}\mathcal{T}_{k,i-j+1}, & \text{if}\ i-j\geq 0, \\ 1, & \text{if}\ i+1=j, \\ 0, & \text{otherwise}% \end{cases}% \quad \text{ and }\quad \overline{y}_{s,t}=% \begin{cases} i^{3(s-t)}\mathcal{T}_{k,i-j+1}, & \text{if}\ s-t\geq 0, \\ -i, & \text{if}\ s+1=t, \\ 0, & \text{otherwise}.% \end{cases}%\] Then, \(\text{per}(_{+}W_{k,n}^{(q)})=\text{per}% (_{-}Y_{k,n}^{(q)})=L_{k,n}(t;q).\)

Conflict of Interest

The author declares that they have no conflicts of interest.

References:

  1. MacHenry, T., 1999. A Subgroup of the Group of Units in the Ring of Arithmetic Functions. Rocky Mt. J. Math., 29(3), pp.1055-1065.
  2. MacHenry, T. and Wong, K., 2012. A Correspondence Between the Isobaric Ring and Multiplicative Arithmetic Functions. Rocky Mt. J. Math., 42(4), pp.1247–1290.
  3. Li, H. and MacHenry, T., 2013. Permanents and Determinants, Weighted Isobaric Polynomials, and Integer Sequences. J. Integer Seq., 16, Article 13.3.5.
  4. MacHenry, T. and Tudose, G., 2005. Reflections on Symmetric Polynomials and Arithmetic Functions. Rocky Mt. J. Math., 35(3), pp.901-926.
  5. MacHenry, T. and Li, H., 2013. The Convolution Ring of Arithmetic Functions and Symmetric Polynomials. Rocky Mt. J. Math. 43(4), pp.1-33.
  6. MacHenry, T. and Wong, K., 2011. Degree \(k\) Linear Recursions mod(\(p\)) and Number Fields. Rocky Mt. J. Math., 41(4), pp.1303-1327.
  7. Al-Salam, W.A., 1959. \(q\)-Bernoulli numbers and polynomials. Math. Nachr., 17, pp.239–260.
  8. Andrews, G.E.,2004. Fibonacci numbers and Rogers-Ramanujan identities. Fibonacci Quart., 42(1), pp.3-19.
  9. Belbachir, H. and Benmezai, A., 2014. An alternative approach to Cigler’s \(q\)-Lucas polynomials. Appl. Math. Comput., 226, pp.691–698.
  10. Belbachir, H. and Benmezai, A., 2014. \(q\) analogue for binomial coefficients and generalized Fibonacci sequence. C.R. Math. Acad. Sci. Paris I., 352(3), pp.167–171.
  11. Carlitz, L., 1974. Fibonacci Notes-3: \(q\)-Fibonacci Numbers. Fibonacci Quart., 12(7), pp.317-322.
  12. Carlitz, L., 1975. Fibonacci notes 4. Fibonacci Quart., 12, pp.97-102.
  13. Cigler, J., 2003. \(q\)-Fibonacci polynomials. Fibonacci Quart., 41, pp.31-40.
  14. Cigler, J., 2002. Einige \(q\)-Analoga der Lucas und Fibonacci-Polynome. Sitzungsber. Abt. II., 211, pp.3–20.
  15. Cigler, J., 2003. Some algebraic aspects of Morse code sequences. DMTCS., 6, pp.055–068.
  16. Cigler, J., 2003. A new class of \(q\)-Fibonacci polynomials. Electron. J. Comb., 10, R19.
  17. Tauraso, R., 2012. \(q\)-Analogs of some congruences involving Catalan numbers. Adv. Appl. Math., 48, pp.603-614.
  18. Brawer, R. and Pirovino, M., 1992. The linear algebra of the Pascal matrix. Linear Algebra Appl., 174, pp.13–23.
  19. Falcon, S., 2011. The \(k\)-Fibonacci matrix and the Pascal matrix. Cent. Eur. J. Math., 9(6), pp.1403–1410.
  20. Lee, G.Y., Kim, J.S. and Lee, S.G., 2002. Factorizations and eigenvalues of Fibonacci and symmetric Fibonacci matrices. Fibonacci Quart., 40(3), pp.203–211.
  21. Lee, G.Y., Kim, J.S., 2003. The linear algebra of the \(k\)-Fibonacci matrix. Linear Algebra Appl., 373, pp.75–87.
  22. Sahin, A.,2016. On the \(q\)-analogue of Fibonacci and Lucas matrices and Fibonacci polynomials. Util. Math., 100, pp.113–125.
  23. Sahin, A., 2020. On (p,q)-Rogers-Szegö matrices. ADYU J SCI., 10(1), pp.285-294.
  24. Infante, G.M., Ramirez, J.L. and Sahin, A., 2017. Some Results on q Analogue of the Bernoulli Euler and Fibonacci Matrices, Mathematical Reports, 19(69), pp.399–417.
  25. Stanica, P., 2005. Cholesky Factorizations of Matrices Associated with \(r\)-Order Recurrent Sequences. Integers, 5(2), A16.
  26. Miles, E.P., 1960. Generalized Fibonacci Numbers and Associated Matrices. Amer. Math. Monthly, 67, pp.745–752.
  27. Amdeberhan, T., Chen, X., Moll, V.H. and Sagan, B.E., 2014. Generalized Fibonacci polynomials and Fibonomial coefficients. Ann. Comb., 18, pp.541–562.
  28. Cahill, N.D., D’Errico, J.R., Narayan, D.A. and Narayan, J.Y., 2002. Fibonacci determinants. College Math. J., 33, pp.221–225.
  29. Cheon, G.-S., Kim, H. and Shapiro, L.W., 2009. A generalization of Lucas polynomial sequence. Discrete Appl. Math., 157, pp.920–927.
  30. Jína, J. and Trojovský, P., 2013. On determinants of some tridiagonal matrices connected with Fibonacci numbers. Int. J. Pure Appl. Math., 88(4), pp.569–575.
  31. Kaygisiz, K. and Sahin, A., 2013. A new method to compute the terms of generalized order-\(k\) Fibonacci numbers. J. Number Theory., 133, pp.3119–3126.
  32. Kaygisiz, K. and Sahin, A., 2012. Generalized bivariate Lucas \(p\)-Polynomials and Hessenberg Matrices. J. Integer Seq., 15, Article 12.3.4.
  33. Kaygisiz, K. and Sahin, A., 2013. Determinant and permanent of Hessenberg matrix and generalized Lucas polynomials. Bull. Iran. Math. Soc., 39(6), pp.1065–1078.
  34. Kilic, E. and Stakhov, A.P., 2009. On the Fibonacci and Lucas p-numbers, their sums, families of bipartite graphs and permanents of certain matrices. Chaos Soliton Fract., 40, pp.2210–2221.
  35. Kilic, E. and Tasci, D., 2010. On the generalized Fibonacci and Pell sequences by Hessenberg matrices. Ars Combin., 94, pp.161–174.
  36. Kilic, E., Tasci, D. and Haukkanen, P., 2010. On the generalized Lucas sequences by Hessenberg matrices. Ars Combin., 95, pp.383–395.
  37. Li, H-C., 2012. On Fibonacci-Hessenberg matrices and the Pell and Perrin numbers. Appl. Math. Comput., 218(17), pp.8353–8358.
  38. Minc, H., 1978. Encyclopedia of Mathematics and its Applications, Permanents, 6, Addison-Wesley Publishing Company.
  39. Gibson, P.M., 1969. An identity between permanents and determinants. Am. Math. Mon., 76, pp.270–271.