This project aims at investigating properties of channel detecting codes on specific domains \(1^+0^+\). We focus on the transmission channel with deletion errors. Firstly, we discuss properties of channels with deletion errors. We propose a certain kind of code that is a channel detecting (abbr. \(\gamma\)-detecting) code for the channel \(\gamma = \delta(m, N)\) where \(m < N\). The characteristic of this \(\gamma\)-detecting code is considered. One method is provided to construct \(\gamma\)-detecting code. Finally, we also study a kind of special channel code named \(\tau(m, N)\)-srp code.
The classical coding theory pays attention to substitution errors occurring when the messages are communicated through the transmission channel. In [1], an abstract channel with combinations of substitutions, deletions and insertions and its properties are discussed. Moreover, the authors [2] provide the concepts of singleton-detecting and \((\gamma,*)\)-detecting codes which can detect both synchronous and asynchronous errors when the finite-length messages are communicated through the transmission channel. Some concepts related to the error detecting property have been studied in [3],[4]. In this project, we first study the concept of \(\gamma\)-detecting codes which are applied for the infinite-length messages communicated in the transmission channel. Furthermore we consider some properties of \(\gamma\)-detecting codes. Next, we investigate some properties of the codes of the form \(1^n0^n\) with \(n \geq 1\) for the transmission channel \(\delta(m,N)\) and propose one method to construct \(\delta(m,N)\)-detecting code. Some properties of the special channel code named \(\tau(m,N)\)-srp code are studied in the final section. We also find the maximal \(\delta(m,N)\)-srp code on specific domains \(1^+0^+\).
Let \(X\) be a finite alphabet and let \(X^*\) be the free monoid generated by \(X.\) The set of natural numbers is denoted by \({\aleph}\). Any element of \(X^*\) is called a word. The length of a word \(w\) is denoted by \(\lg(w).\) Any subset of \(X^*\) is called a language. Let \(X^+=X^* \setminus \{ \lambda \},\) where \(\lambda\) is the empty word. The concatenation of two words \(w\) and \(v\) over \(X\) is denoted by \(wv\). For each positive integer \(n\) and \(L \subseteq X^*\), the notation \(L^n = \{u_1u_2\cdots u_n| \ u_i \in L, 1\le i \le n\}\). Let \(L^0 = \{\lambda\}\). Then \(X^n = \{w \in X^* | \ \lg(w) = n\}\). The set consisting of all infinite sequences of nonempty words of \(L\) is denoted by \(L^{\omega}= \{u_1u_2 \cdots u_i \cdots | \ u_i \in L \setminus L^0, i \ge 1\}\). Let \(L^{\infty} = L^* \cup L^{\omega}\), where \(L^* = \bigcup^{\infty}_{n=0} L^n.\) Note that \(L^* \cap L^{\omega} = \emptyset\).
Let \(Y \subseteq X^*\). If \(y \in Y^{\omega}\), then a factorization of \(y\) over \(Y\) is an element \((y_1, y_2, \dots , y_n, \dots)\) of the countably infinite Cartesian product of \(Y\), denoted by \(\Pi^{\infty} Y\), for which \(y = y_1y_2 \cdots y_n \cdots\). If \(y \in Y^+\), then a factorization of \(y\) over \(Y\) with order \(n\) is an ordered \(n\)-tuple \((y_1,y_2, \dots, y_n)\) such that \(y_i \in Y, 1 \le i \le n\), and \(y = y_1y_2 \cdots y_n\). A factorization of \(y \in Y^+\) over \(Y\) is a factorization of \(y\) over \(Y\) with some order \(n\).
A channel \(\gamma\) over \(X\) is a subset of the Cartesian product \(X^{\infty} \times X^{\infty}\). An element \((y^{\prime}, y) \in \gamma\) means that for an input \(y\), the channel could output \(y^{\prime}\). A channel is noiseless if \(\gamma \subseteq \{(y, y) | y \in X^{\infty}\}\). Otherwise, it is noisy. Denote by \(\pi_2\) the projection onto the second coordinate, which is defined by \(\pi_2(y_1, y_2) = y_2\) for every \((y_1, y_2) \in X^{\infty} \times X^{\infty}\). For \(\gamma \subseteq X^{\infty} \times X^{\infty}\), this notation can be extended to \(\pi_2(\gamma) = \bigcup_{y^{\prime} \in X^{\infty}} \{y \in X^{\infty} | (y^{\prime}, y) \in \gamma \}\). Thus \(\langle y \rangle_{\gamma}\) is the set of all possible outputs of with respect to the input \(y\). Given a subset \(Y\) of \(\pi_2(\gamma)\), we define \(\langle Y \rangle_{\gamma}=\cup_{y \in Y}\langle y \rangle_{\gamma}\) to be the \(\gamma\)-spanned set of \(Y\).
Three basic error types \(\sigma, \iota\), and \(\delta\) indicate substitutions, insertions, and deletions, respectively. For a natural number \(N\) and a nonnegative integer \(m\) with \(m \le N\), \(\gamma(m,N)\) denotes that at most \(m\) errors of type \(\gamma\) can occur in any consecutive \(N\) symbols in a channel, where \(\gamma\) may be \(\sigma, \iota, \delta\), or their combinations. Note that (see [5]) for a nonempty word \(w\) with \(\lg(w)=n\) where \(n \le N\), \[\langle w \rangle_{\gamma(m,N)}= \begin{cases} \langle w \rangle_{\gamma(m,n)}, & \text{if } N \geq n \geq m; \\ \langle w \rangle_{\gamma(n,n)}, & \text{if } m > n. \end{cases}\] For instance, \(\langle 1100 \rangle_{\delta(1,4)}=\{1100,100,110\}=\langle 1100 \rangle_{\delta(1,5)}\) and \(\langle 1100 \rangle_{\delta(1,3)}=\{1100,100,110,10\}\). Items not defined in this project can be found in ([6],[5]).
Remark 1. Let \(N_2 \ge N_1 \ge N\) for some nature numbers \(N,N_1,N_2\). Then \(\langle w \rangle_{\delta(1,N_2)} \subseteq \langle w \rangle_{\delta(1,N_1)}\) where \(\lg(w)=n \le N\).
Definition 1. Let \(\gamma\) be a channel. A code \(C \subseteq X^+\) is detecting for \(\gamma\) or \(\gamma\)-detecting, if the following condition is satisfied : for all \(w \in C^{\infty}\), \(C^{\infty} \cap \langle w \rangle_{\gamma}=\{ w \}\).
From the above definition of the channel detecting code, we have that if the code \(C\) is called channel detecting, then for all \(w_1, w_2 \in C^{\infty}\) with \(w_1 \ne w_2\), \(w_1 \not\in \langle w_2 \rangle_{\gamma}\) for channel \(\gamma\). For instance, let \(C=\{1^20^4,1^60^6\}\), \(w_1=110000(1^60^6)^{\omega}, w_2=110000110000(1^60^6)^{\omega} \in C^{\infty}\). It is clear that \(w_1 \ne w_2\), but \(w_1 \in \langle w_2 \rangle_{\gamma}\) where \(\gamma=\delta(3,4)\) because \(w_1\) can be obtained from \(w_2=11\underline{0}00\underline{011}00\underline{00}(1^60^6)^{\omega}\) after deleting the underlined symbols. Then \(C\) is not \(\delta(3,4)\)-detecting code.
In this section, the channel with deletion errors is considered. We consider the case \(\gamma=\delta(m,N)\) where \(m < N\). The case \(\gamma=\delta(m,N)\) where \(m \ge N\) is omitted because there does not exist such a \(\gamma\)-detecting code. First, we study the sufficient conditions of \(\gamma\)-detecting code. For instance, let \(X=\{ 0,1 \}\), \(C=\{ 1^20^4 \}\) and \(\gamma=\delta(6,10)\). Let \(w_1=(1^20^4)^{4}\) and \(w_2=(1^20^4)^{5}\). Then \(w_1 \ne w_2\) for \(w_1,w_2 \in C^{\infty}\). We have \(w_1 \in \langle w_2 \rangle_{\gamma}\). This implies that \(C\) is not \(\gamma\)-detecting.
Remark 2. Let \(C=\{ w \}\) and \(\gamma=\delta(m,N)\) where \(m<N\). If \(\ \lg(w) \le m\), then \(C\) is not \(\gamma\)-detecting.
Proof. Suppose that \(C\) is \(\gamma\)-detecting. Let \(w^k, w^{k+1} \in C^{\infty}\) for some \(k \ge 1\). Then \(w^k \ne w^{k+1}\). Since \(\lg(w) \le m\), by the definition of channel detecting code, \(w^k \in \langle w^{k+1} \rangle_{\gamma}\), a contradiction. Thus \(C\) is not \(\gamma\)-detecting. ◻
Remark 3. Let \(\gamma=\delta(m,N)\) where \(m < N\). Let \(C\) be a \(\gamma\)-detecting code with \(N \ge {\rm max}\{\lg(w) | \ w \in C \}\). If there exist \(p,q \in X^*\) such that \(w, pwq \in C\), then \(pq=\lambda\) or \(\lg(pq) > m\).
Proof. Let \(C\) be a \(\gamma\)-detecting code. Suppose that there exist \(w, pwq \in C\) such that \(u=pwq\) for some \(p,q \in X^*\) with \(1 \le \lg(pq) \le m\). Since \(N \ge {\rm max}\{\lg(w) | w \in C \}\), we have \(w \in \langle u \rangle_{\gamma}\). This contradicts that \(C\) is a \(\gamma\)-detecting code. ◻
Lemma 1. Let \(X=\{0,1 \}\) and \(w_1=1^i0^i\), \(w_2=1^j0^j\) where \(i,j \in \aleph\) and \(j> i\). Let \(\gamma=\delta(m,N)\) where \(m<N\) and \(t=\lfloor \frac{\lg(w_2)}{N} \rfloor\). Then \(w_1 \in \langle w_2 \rangle_{\gamma}\) if and only if \(\lg(w_2)-\lg(w_1) \le tm+{\rm min}\{m, \lg(w_2)-tN \}\).
Proof. Let \(w_1=1^i0^i\), \(w_2=1^j0^j\) where \(i,j \in \aleph\) and \(j> i\). Let \(t=\lfloor \frac{\lg(w_2)}{N} \rfloor\). Then \(t \le \frac{\lg(w_2)}{N} < t+1.\) It follows that \(tN \le \lg(w_2) < tN+N\). We have \(w_2=1^j0^j=a_1 \cdots a_{tN} \cdots a_{2j}\), where \(a_k \in \{ 0, 1\}\) for \(1 \le k \le 2j\). First, we consider to delete \(m\) digits from \(a_{sN+1} \cdots a_{sN+N}\) whenever \(0 \le s < t\). Then the total \(tm\) digits are deleted from \(1^j0^j\). Secondly, the \({\rm min}\{m, \lg(w_2)-tN \}\) digits are deleted from \(a_{tN+1} \cdots a_{2j}\). Thus for any word \(w_1=1^i0^i\) with \(i < j\), the condition \(\lg(w_2)-\lg(w_1) \le tm+{\rm min}\{m, \lg(w_2)-tN \}\) implies that \(w_1 \in \langle w_2 \rangle_{\gamma}\). By an analogous proof, the condition \(\lg(w_2)-\lg(w_1) > tm+{\rm min}\{m, \lg(w_2)-tN \}\), implies that \(w_1 \not\in \langle w_2 \rangle_{\gamma}\). ◻
Corollary 1. Let \(\gamma=\delta(m,N)\) where \(m<N\). Then \(a^k \in \langle a^j \rangle_{\gamma}\) with \(j \ge k\) for some \(a \in X\) and \(k, j \in \aleph\) if and only if \(k \ge j-(tm+{\rm min}\{m, j-tN \})\) where \(t=\lfloor \frac{j}{N} \rfloor\).
We study the relationship between words which have the form \(1^{s_1}0^{s_2} \in \langle 1^j0^j \rangle_{\gamma}\) with \(s_1,s_2 \in \aleph\) and words which have the form \(1^i0^i \not\in \langle 1^j0^j \rangle_{\gamma}\) with \(i \in \aleph\) where \(j \in \aleph\) for the channel \(\gamma=\delta(m,N)\) where \(m<N\). For instance, let \(\gamma=\delta(1,3)\). Then \(\langle 1^50^5 \rangle_{\gamma}=\{1^{s_1}0^{s_2}| \ 3 \le {s_1} \le 5, \ 3 \le {s_2} \le 5 \}\). It is clear that \(10, \ 1^20^2 \not\in \langle 1^50^5 \rangle_{\gamma}\).
Lemma 2. Let \(X=\{0,1 \}\) and \(w_1=1^i0^i\), \(w_2=1^{s_1}0^{s_2}\), \(w_3=1^j0^j\) where \(i, j, s_1, s_2 \in \aleph\) and \(j> i\). Let \(\gamma=\delta(m,N)\) where \(m<N\). If \(w_1 \not\in \langle w_3 \rangle_{\gamma}\) and \(w_2 \in \langle w_3 \rangle_{\gamma}\), then \(s_1, s_2 > i\).
Proof. Let \(\gamma=\delta(m,N)\) where \(m<N\) and \(t=\lfloor \frac{\lg(w_3)}{N} \rfloor\). We consider \(w_1 \not\in \langle w_3 \rangle_{\gamma}\) and \(w_2 \in \langle w_3 \rangle_{\gamma}\). As \(w_2 \in \langle w_3 \rangle_{\gamma}\), by Lemma 1, we have \(\lg(w_3)-\lg(w_2) \le tm+{\rm min}\{m, \lg(w_3)-tN \}\). Since \(w_1 \not\in \langle w_3 \rangle_{\gamma}\), by Lemma 1 again, we have \(\lg(w_3)-\lg(w_1) > tm+{\rm min}\{m, \lg(w_3)-tN \}\). It follows that \(\lg(w_3)-\lg(w_2) < \lg(w_3)-\lg(w_1)\). Thus \(\lg(w_1) < \lg(w_2)\). We have \(2i < s_1+s_2\). There are the following cases:
\(i \ge s_1\). By corollary 1, we have \(s_1 \ge j-(tm+{\rm min}\{m, j-tN \})\) and \(i < j-(tm+{\rm min}\{m, j-tN \})\) where \(t=\lfloor \frac{j}{N} \rfloor\). It follows that \(s_1 > i\), a contradiction.
\(i < s_1\) and \(i \ge s_2\).
As \(i \ge s_2\), the proof is similar to case (1). It follows that \(s_2 > i\), a contradiction. From case (1) and case (2), we have \(s_1, s_2 > i\). ◻
Lemma 3. Let \(X=\{0,1 \}\) and \(w_1=1^i0^i\), \(w_2=1^j0^j\) where \(i,j \in \aleph\) and \(j> i\). Let \(\gamma=\delta(m,N)\) where \(m<N\) and \(k=\lfloor \frac{\lg(w_1)}{N-m} \rfloor\). Then the following statements are true:
\(w_1 \in \langle w_2 \rangle_{\gamma}\) when \(\lg(w_2) \le \lg(w_1)+(k+1)m\).
\(w_1 \notin \langle w_2 \rangle_{\gamma}\) when \(\lg(w_2) \ge \lg(w_1)+(k+1)m+1\).
Proof. Let \(w_1=1^i0^i\), \(w_2=1^j0^j\) where \(i,j \in \aleph\) and \(j> i\). Let \(t=\lfloor \frac{\lg(w_2)}{N} \rfloor\). Then \(t \le \frac{\lg(w_2)}{N} < t+1\). It follows that \[tN \le \lg(w_2) < (t+1)N. \tag{1}\] Let \(k=\lfloor \frac{\lg(w_1)}{N-m} \rfloor\). We consider the following cases:
\(\lg(w_2) \le \lg(w_1)+(k+1)m\). Since \(k=\lfloor \frac{\lg(w_1)}{N-m} \rfloor\), we have \(k \le \frac{\lg(w_1)}{N-m} <k+1\). It follows that \[k(N-m) \le \lg(w_1) < (k+1)(N-m). \tag{2}\] This in conjunction with \(\lg(w_2) \le \lg(w_1)+(k+1)m\) yields that \(\lg(w_2) < (k+1)(N-m)+(k+1)m=(k+1)N\). By Eq. (1), we have \(t \le \frac{\lg(w_2)}{N}\). Thus \(tN \le \lg(w_2)\). This in conjunction with \(\lg(w_2) < (k+1)N\) yields that \(t < (k+1)\); hence \(t \le k\). By Lemma 1, we want to show that \(\lg(w_2)- tm-{\rm min}\{m, \lg(w_2)-tN \} \le \lg(w_1)\). It will imply that \(w_1 \in \langle w_2 \rangle_{\gamma}\). We consider the following subcases:
(1-1)\(\lg(w_2)-tN < m\). We have \(\lg(w_2)- tm-{\rm min}\{m, \lg(w_2)-tN \}=\lg(w_2)- tm-(\lg(w_2)-tN)=t(N-m) \le k(N-m)\). This in conjunction with Eq. (2) yields that \(\lg(w_2)- tm-{\rm min}\{m, \lg(w_2)-tN \} \le \lg(w_1)\).
(1-2)\(\lg(w_2)-tN \ge m\). We have \(\lg(w_2)- tm-{\rm min}\{m, \lg(w_2)-tN \}=\lg(w_2)- tm-m=\lg(w_2)- (t+1)m\). From Eq. (1), we have \(\lg(w_2) < (t+1)N\). It follows that \(\lg(w_2)-(t+1)m < (t+1)N-(t+1)m=(t+1)(N-M) \le k(N-M) \le \lg(w_1)\) whenever \(t<k\). If \(t=k\), then \(\lg(w_2)- (t+1)m=\lg(w_2)- (k+1)m\). This in conjunction with \(\lg(w_2) \le \lg(w_1)+(k+1)m\) yields that \(\lg(w_2)- tm-{\rm min}\{m, \lg(w_2)-tN \} \le \lg(w_1)\).
Therefore, we showed that \(\lg(w_2)- tm-{\rm min}\{m, \lg(w_2)-tN \} \le \lg(w_1)\). Thus \(w_1 \in \langle w_2 \rangle_{\gamma}\).
\(\lg(w_1)+(k+1)m+1 \le \lg(w_2)\). From Eq. (2), we have \(k(N-m) \le \lg(w_1)\). This in conjunction with \(\lg(w_1)+(k+1)m+1 \le \lg(w_2)\) yields that \(k(N-m)+(k+1)m+1 \le \lg(w_1)+(k+1)m+1 \le \lg(w_2)\). Thus \(kN+m+1 \le \lg(w_2)\). By Lemma 1, we want to show that \(\lg(w_2)- tm-{\rm min}\{m, \lg(w_2)-tN \} > \lg(w_1)\). We consider the following subcases:
(2-1)\(\lg(w_2)-tN \le m\). We have \(kN+m+1 \le \lg(w_2) \le tN+m\). This implies that \(k < t\). Since \(\lg(w_2)-tN \le m\), we have \(\lg(w_2)- tm-{\rm min}\{m, \lg(w_2)-tN \} =\lg(w_2)- tm-(\lg(w_2)-tN)=t(N-m)\). This in conjunction with \(k < t\) yields that \(t(N-m) \ge (k+1)(N-m)\). From Eq. (2), we have \(\lg(w_1) < (k+1)(N-m)\). Hence \(\lg(w_2)- tm-{\rm min}\{m, \lg(w_2)-tN \} > \lg(w_1)\).
(2-2)\(\lg(w_2)-tN > m\). Since \(kN+m+1 \le \lg(w_2)\), this in conjunction with Eq. (1) which \(\lg(w_2) < (t+1)N\) yields that \(kN+m+1 < (t+1)N=tN+N\). Note that \(m < N\). This implies that \(k \le t\). Since \(\lg(w_2)-tN > m\), we have \(\lg(w_2)- tm-{\rm min}\{m, \lg(w_2)-tN \} =\lg(w_2)- tm-m\) and \(\lg(w_2)> tN+m\). It follows that \(\lg(w_2)- tm-m > tN+m-tm-m=t(N-m)\). If \(t > k\), then \(t(N-m) \ge (k+1)(N-m)\). From Eq. (2), \(\lg(w_2)- tm-{\rm min}\{m, \lg(w_2)-tN \} < (k+1)(N-m)\). We have \(\lg(w_2)- tm-{\rm min}\{m, \lg(w_2)-tN \} > \lg(w_1)\). If \(t = k\), then \(\lg(w_2)- tm-m=\lg(w_2)- km-m\). Since \(\lg(w_1)+(k+1)m+1 \le \lg(w_2)\), we have \(\lg(w_2)- km-m \ge \lg(w_1)+(k+1)m+1- km-m = \lg(w_1)+1 > \lg(w_1)\).
Therefore, we showed that \(\lg(w_2)- tm-{\rm min}\{m, \lg(w_2)-tN \} > \lg(w_1)\). Thus \(w_1 \notin \langle w_2 \rangle_{\gamma}\).
◻
We extend the concept of the above Lemma 2 and Lemma 3. We have the following lemma.
Lemma 4. Let \(X=\{0,1 \}\) and \(w_1=1^i0^i\), \(w_2=1^{s_1}0^{s_2}\), \(w_3=1^j0^j\) where \(i,j,s_1,s_2 \in \aleph\) and \(j> i\). Let \(\gamma=\delta(m,N)\) where \(m<N\) and \(k=\lfloor \frac{\lg(w_1)}{N-m} \rfloor\). If \(w_2 \in \langle w_3 \rangle_{\gamma}\) and \(\lg(w_3) \ge \lg(w_1)+(k+1)m+1\), then \(s_1, s_2 > i\).
Proposition 1. Let \(X=\{0,1 \}\), \(C \subseteq \{ 1^n0^n| \ n \in \aleph \}\), and \(\gamma=\delta(m,N)\) where \(m < N\). Let \(k=min \{ \ \lg(w)| \ w \in C \}\) and \(k >m\). If the following conditions hold:
for \(w_1,w_2 \in C\) with \(\lg(w_2) > \lg(w_1)\), \(\lg(w_2) > \lg(w_1)+(\lfloor \frac{\lg(w_1)}{N-m} \rfloor+1)m\);
for \(w_3,w_4 \in C\) with \(\lg(w_3) \ge \lg(w_4)\), \(\{w_3 \} \cap \langle w^*w_4w^* \setminus w_3 \rangle_{\gamma}=\emptyset\) where \(\lg(w)=k\),
then \(C\) is \(\gamma\)-detecting.
Proof. Assume that there exist \(u,v \in C^{\infty}\) such that \(u \in \langle v \rangle_{\gamma}\). Let \(u=u_1u_2 \cdots u_i \cdots\) and \(v=v_1v_2 \cdots v_j \cdots\), where \(u_i,v_j \in C\) and \(i,j \in \aleph\). Now we consider the first subword \(u_1\) of \(u\) such that \(u_1 \in \langle v_1v_2 \cdots v_k \rangle_{\gamma}\) where \(k \ge 1\). By Lemma 3, the statement (1) implies that \(u_{i^{\prime}} \not\in \langle v_{j^{\prime}} \rangle_{\gamma}\) for some \(i^{\prime},j^{\prime} \in \aleph\). It follows that \(u_{i^{\prime}} \not\in \langle xv_{j^{\prime}}y \rangle_{\gamma}\) where \(x,y \in C^{\infty}\). Indeed, if \(u_{i^{\prime}} \in \langle xv_{j^{\prime}}y \rangle_{\gamma}\), then we have \(\lg(xv_{j^{\prime}}y) – \lg(u_{i^{\prime}}) \le (\lfloor \frac{\lg(w_1)}{N-m} \rfloor+1)m < \lg(v_{j^{\prime}}) – \lg(u_{i^{\prime}})\), a contradiction. Therefore, \(u_1 \in \langle v_1v_2 \cdots v_k \rangle_{\gamma}\) implies that \(\lg(u_1) \ge \lg(v_i)\) for all \(1 \le i \le k\). Let \(k=min \{ \ \lg(w)| \ w \in C \}\) and \(k >m\). We consider the following cases:
\(2m < k\).
From the definition of the channel with deletion errors, we have \(1^s \not\in \langle C^{\infty} \rangle_{\gamma}\) and \(0^t \not\in \langle C^{\infty} \rangle_{\gamma}\) where \(s,t \in \aleph\). Thus for \(u_1 \in \langle v_1v_2 \cdots v_k \rangle_{\gamma}\), we have \(u_1 \in \langle v_1 \rangle_{\gamma}\). Note that if \(\lg(u_1) > \lg(v_1)\), then \(u_1 \not\in \langle v_1 \rangle_{\gamma}\). This in conjunction with \(\lg(u_1) \ge \lg(v_1)\) yields that \(u_1=v_1\).
\(2m \ge k\). Let \(\lg(w)=k\) where \(w \in C\). From the the statement (1), we have \(\lg(w^{\prime}) > \lg(w)+(\lfloor \frac{\lg(w)}{N-m} \rfloor+1)m\) for some \(w^{\prime} \in C \setminus \{w \}\). This in conjunction with \(\lg(w) \ge m\) yields that \(\lg(w^{\prime}) > m+(\lfloor \frac{\lg(w)}{N-m} \rfloor+1)m > 2m\). Then we have \(1^s \not\in \langle C^{*} \rangle_{\gamma} \setminus \langle w^{*} \rangle_{\gamma}\) and \(0^t \not\in \langle C^{*} \rangle_{\gamma} \setminus \langle w^{*} \rangle_{\gamma}\) where \(s,t \in \aleph\). Now we consider \(u_1 \in \langle v_1v_2 \cdots v_k \rangle_{\gamma}\) with \(\lg(u_1) \ge \lg(v_i)\) for all \(1 \le i \le k\). If \(k=1\), then we have \(u_1 \in \langle v_1 \rangle_{\gamma}\). By the similar proof used in case(1), we have \(u_1=v_1\). If \(k >1\), then we can assume that \(u_1=1^p1^m0^n0^q\) where \(p,q,m,n \in \aleph \cup \{0\}\) such that \(1^p \in \langle w^{*} \rangle_{\gamma}\), \(1^m0^n \in \langle v_i \rangle_{\gamma}\) where \(1 \le i \le k\), and \(0^q \in \langle w^{*} \rangle_{\gamma}\). There are the following subcases:
(2-1) \(m=0\) or \(n=0\) or \(m=n=0\).
Since \(1^s \not\in \langle C^{*} \rangle_{\gamma} \setminus \langle w^{*} \rangle_{\gamma}\) and \(0^t \not\in \langle C^{*} \rangle_{\gamma} \setminus \langle w^{*} \rangle_{\gamma}\) where \(s,t \in \aleph\), this in conjunction with \(u_1 \in \langle v_1v_2 \cdots v_k \rangle_{\gamma}\) yields that \(u_1 \in \langle ww \cdots w \rangle_{\gamma}=\langle w^*ww^* \rangle_{\gamma}\). This result contradicts the statement (2).
(2-2) \(p=0\) and \(q \ne 0\).
We have \(u_1=1^m0^n0^q\). Since \(u_1 \in \langle v_1v_2 \cdots v_k \rangle_{\gamma}\), this implies that \(u_1 \in \langle v_iw \cdots w \rangle_{\gamma}=\langle w^*v_iw^* \rangle_{\gamma}\). This result contradicts the statement (2).
(2-3) \(p \ne 0\) and \(q=0\).
We have \(u_1=1^p1^m0^n\). Since \(u_1 \in \langle v_1v_2 \cdots v_k \rangle_{\gamma}\), this implies that \(u_1 \in \langle w \cdots wv_i \rangle_{\gamma}=\langle w^*v_iw^* \rangle_{\gamma}\). This result contradicts the statement (2).
(2-4) \(p = 0\) and \(q=0\).
We have \(u_1=1^m0^n\). Then \(u_1 \in \langle v_1 \rangle_{\gamma}\). This implies that \(u_1=v_1\).
(2-5) \(p \ne 0\) and \(q \ne 0\).
We have \(u_1=1^p1^m0^n0^q\). Since \(u_1 \in \langle v_1v_2 \cdots v_k \rangle_{\gamma}\), this implies that \(u_1 \in \langle w \cdots wv_iw \cdots w \rangle_{\gamma}=\langle w^*v_iw^* \rangle_{\gamma}\). This result also contradicts the statement (2).
Therefore, we can conclude that for \(u_1 \in \langle v_1v_2 \cdots v_k \rangle_{\gamma}\) with \(k \ge 1\), we have \(u_1 \in \langle v_1 \rangle_{\gamma}\) and \(u_1=v_1\). By similar discussion, we can conclude the results that \(u_2=v_2\), \(u_3=v_3\), \(\cdots\). Thus \(u \in \langle v \rangle_{\gamma}\) implies that \(u=v\) and \(C\) is \(\gamma\)-detecting. ◻
Let \(\gamma=\delta(m,N)\) for any given \(1 \le m < N\). In this section, we provide a method to construct \(\gamma\)-detecting code which is the subset of \(\{ 1^n0^n| n\ge 1 \}\).
Proposition 2. Let \(X= \{ 0,1 \}\) and \(\gamma=\delta(m,N)\) where \(m < N\). Let \(C=\{ w \}\) where \(w=1^{s_1}0^{s_2}\) for some \(s_1,s_2 \in \aleph\). Then \(w \notin \langle w^2 \rangle_{\gamma}\) implies that \(C\) is \(\gamma\)-detecting.
Proof. Suppose that \(C\) is not \(\gamma\)-detecting. There exist \(w_1, w_2 \in C^{\infty}, w_1 \ne w_2\) such that \(w_1 \in \langle w_2 \rangle_{\gamma}\). Without loss of generality, we can assume that \(w_{w_1}=w\) and \(w_{w_2}=w^{\infty} \setminus \{w \}\) such that \(w_{w_1} \in \langle w_{w_2} \rangle_{\gamma}\) where \(w_{w_1}\) and \(w_{w_2}\) are subwords of \(w_1\) and \(w_2\) respectively. Now we consider \(w \in \langle w^{\infty} \setminus \{w \} \rangle_{\gamma}\). There exist \(u \in \langle w^2 \rangle_{\gamma}\) and \(v \in \langle w^{\infty} \rangle_{\gamma}\) such that \(w=uv\). Since \(w=1^{s_1}0^{s_2}\), it follows that \(u=1^{i_1}0^{i_2}\) for some \(0 \le i_1 \le s_1\) and \(0 \le i_2 \le s_2\). This in conjunction with the definition of the transmission channel \(\gamma=\delta(m,N)\) yields that \(\{1^{j_1}0^{j_2} \in w^2 | \ i_1 \le j_1 \le s_1, \ i_2 \le j_2 \le s_2 \}\). This implies that \(w \in \langle w^2 \rangle_{\gamma}\), a contradiction. Thus \(C\) is \(\gamma\)-detecting. ◻
In the following we define a function for constructing the \(\gamma\)-detecting code where \(\gamma=\delta(m,N)\). A function \(f_{\gamma}: \aleph \rightarrow \aleph\) is defined as \[f_{\gamma}(1)=m+1\] and \[f_{\gamma}(k+1)=f_{\gamma}(k)+ \lceil \frac{(\lfloor \frac{2f_{\gamma}(k)}{N-m} \rfloor+1)m+1 }{2} \rceil\] for \(k \in \aleph\).
For instance, let \(\gamma=\delta(1,4)\). Then \(f_{\gamma}(\aleph)=\{2,4,6,9,13,\cdots \}\). We have \(\langle 1^60^6 \rangle_{\gamma}=\{1^{s_1}0^{s_2}| \ 4\le s_1 \le 6, 4 \le s_2 \le 6\} \setminus \{1^40^4 \}\) and \(\langle 1^40^4 \rangle_{\gamma}=\{1^{s_1}0^{s_2}| \ 3\le s_1 \le 4, 3 \le s_2 \le 4\}\). Note that \(1^20^2 \not\in \langle 1^40^4 \rangle_{\gamma}\).
Proposition 3. The code \(C=\{1^{f_{\gamma}(k)}0^{f_{\gamma}(k)} \mid k \in \aleph\}\) is \(\gamma\)-detecting where \(\gamma=\delta(m,N)\).
Proof. Let \(X=\{ 0,1 \}\), \(\gamma=\delta(m,N)\), and \(C=\{1^{f_{\gamma}(k)}0^{f_{\gamma}(k)} \mid k \in \aleph \}\). We take \(w_1=1^{f_{\gamma}(i)}0^{f_{\gamma}(i)}\) and \(w_2=1^{f_{\gamma}(j)}0^{f_{\gamma}(j)}\) with \(j > i\) where \(i,j \in \aleph\). It follows \(\lg(w_2)-\lg(w_1)=2(f_{\gamma}(j)-f_{\gamma}(i)) \geq 2(f_{\gamma}(i+1)-f_{\gamma}(i)) =2\lceil \frac{(\lfloor \frac{2f_{\gamma}(i)}{N-m} \rfloor+1)m+1 }{2} \rceil \ge (\lfloor \frac{2f_{\gamma}(i)}{N-m} \rfloor +1 )m+1 >(\lfloor \frac{2f_{\gamma}(i)}{N-m} \rfloor +1 )m\). By Lemma 3, we have \(w_1 \notin \langle w_2 \rangle_{\gamma}\). By Proposition 3, it follows that \(C\) is \(\gamma\)-detecting. ◻
In this section, we study a special kind of channel code. Let \(\tau=\{\delta,\sigma,\iota \}\) and let \(\gamma\) be a channel of the form \(\tau(m,N)\) where \(m < N\). We consider the following properties from [5]. For a language \(L \subseteq X^+\), let \[{\rm Pref}(L)=\{x \in X^+| \ xX^* \cap L \ne \emptyset \},\] and \[L_{\rm s}=\{y \in X^+ | \ X^*Ly \cap L \ne \emptyset \}.\] A language \(L \subseteq X^+\) is called strongly residue preventive if \({\rm Pref}(L) \cap L_{\rm s}=\emptyset\). For instance, let \(L=\{ab, a^2ba \}\). Then \({\rm Pref}(L)=\{ a,ab,a^2, a^2b, a^2ba \}\) and \(L_{\rm s}=\{a \}\). Since \(a \in {\rm Pref}(L) \cap L_{\rm s}\), \(L\) is not strongly residue preventive. A language \(L\) is an \(\tau(m,N)\)-srp code [5] if \(\langle L \rangle_{\tau(m,N)}\) is strongly residue preventive. For instance, let \(X=\{ 0,1 \}\), \(\gamma=\delta(1,4)\). We take \(w=1^30^2 \in 1^+0^+\). Then \(\langle w \rangle_{\gamma}=\{1^30^2,1^30,1^20^2,1^20 \}\). It follows that \((\langle w \rangle_{\gamma})_{\rm s}=\{0 \}\) and \({\rm Pref}(\langle w \rangle_{\gamma})=\{1,1^2,1^3,1^30,1^30^2,1^20,1^20^2 \}\). Thus \({\rm Pref}(\langle w \rangle_{\gamma}) \cap (\langle w \rangle_{\gamma})_{\rm s} = \emptyset\). We study the characteristic of \(\tau(m,N)\)-srp code in the following proposition. For \(L_1, L_2 \subseteq X^+\), \[L_1^{-1}L_2=\{x \in X^+|L_1x \cap L_2 \ne \emptyset \}.\] and \[L_2L_1^{-1}=\{x \in X^+|xL_1 \cap L_2 \ne \emptyset \}.\]
Proposition 4. Let \(X= \{ 0,1 \}\) and \(\gamma=\tau(m,N)\) where \(m < N\). Let \(L \subseteq X^+\). Then \(L\) is an \(\tau(m,N)\)-srp code if and only if \(D^{-1}D \cap DD^{-1} = \emptyset\) where \(D = \langle L \rangle_{\gamma}\).
Proof. Let \(X= \{ 0,1 \}\) and \(\gamma=\tau(m,N)\) where \(m < N\). Let \(L\) is an \(\tau(m,N)\)-srp code and \(D = \langle L \rangle_{\gamma}\). Suppose that \(D^{-1}D \cap DD^{-1} \ne \emptyset\). There exists \(x \in X^+\) such that \(u=w_1x\) and \(v=xw_2\) for some \(u,v,w_1,w_2 \in D\). Since \(v=xw_2\), we have \(x \le_{\rm p} v \in D\). It follows that \(x \in {\rm Pref}(D)\). Since \(u=w_1x\), we have \(x \in D_{\rm s}\). Thus \(x \in {\rm Pref}(D) \cap D_{\rm s}\), a contradiction. Conversely, suppose that \(L\) is not an \(\tau(m,N)\)-srp code. There exists \(x \in X^+\) such that \(x \in {\rm Pref}(D) \cap D_{\rm s}\). This implies that \(D^{-1}D \cap DD^{-1} \ne \emptyset\), a contradiction. Thus \(L\) is an \(\tau(m,N)\)-srp code. ◻
Proposition 5. Let \(X= \{ 0,1 \}\) and \(\gamma=\delta(m,N)\) where \(m < N\). There exist \(p,q \in Z\) with \(p \ge 1\) and \(q \ge 0\) such that \(1^{m+p}0^{m+q}\) is an \(\delta(m,N)\)-srp codeword.
Proof. Let \(X= \{ 0,1 \}\) and \(\gamma=\delta(m,N)\) where \(m < N\). Let \(L \subseteq 1^+0^+\) be an \(\delta(m,N)\)-srp code and \(D = \langle L \rangle_{\gamma}\). Suppose that \(1^{m+p}0^{m+q}\) is an \(\delta(m,N)\)-srp codeword where \(p,q \in Z\) with \(p \ge 1\) and \(q \ge 0\). If \(p \le 0\), then we have \(1^{m+p}0^{m+q},1^{m+p}0^{m+q-1},0^{m+q} \in D\). This implies that \(0 \in {\rm Pref}(D) \cap D_{\rm s}\), a contradiction. If \(q < 0\), then we have \(1^{m+p},1^{m+p-1} \in D_{\rm s}\). This implies that \(1 \in {\rm Pref}(D) \cap D_{\rm s}\), a contradiction. Thus \(1^{m+p}0^{m+q}\) is an \(\delta(m,N)\)-srp codeword with \(p \ge 1\) and \(q \ge 0\). ◻
Proposition 6. Let \(X= \{ 0,1 \}\) and \(\gamma=\delta(m,N)\) where \(m < N\). The language \(L=\{1^{m+p}0^{m+q}| \ p\ge 1,q \ge 0 \}\) is a maximal \(\delta(m,N)\)-srp code on \(1^+0^+\).
Proof. Let \(X= \{ 0,1 \}\) and \(\gamma=\delta(m,N)\) where \(m < N\). It is sufficient to show that \(L \cap \{w \}\) is not \(\delta(m,N)\)-srp code for any \(w \in 1^+0^+ \setminus L\). If a word \(w \in 1^+0^+ \setminus L\), then \(w=1^k, w=0^k, w=1^{m-p_1}0^k, w=1^k0^{m-q_1}\) for some \(k \ge 1, p_1 \ge 0, q_1 \ge 1\). We consider the following cases:
\(w=1^k\). Let \(L^{\prime}=\{w=1^k | k \ge 1 \}\) and \(D= \langle L^{\prime} \rangle_{\gamma}\). We have \(1^k, 1^{k-m} \in D\). This implies that \(1 \in {\rm Pref}(D) \cap D_{\rm s}\), a contradiction.
\(w=0^k\). This case is similar to case (1). We get \(0 \in {\rm Pref}(D) \cap D_{\rm s}\) where \(D= \langle \{w=0^k | k \ge 1 \} \rangle_{\gamma}\), a contradiction.
\(w=1^{m-p_1}0^k\). Let \(L^{\prime}=\{w=1^{m-p_1}0^k | k \ge 1,p_1 \ge 0 \}\) and \(D= \langle L^{\prime} \rangle_{\gamma}\). We have \(0^{k-k_1} \in D\) for some \(k_1 \ge 0\). This implies that \(0 \in {\rm Pref}(D) \cap D_{\rm s}\), a contradiction.
\(w=1^k0^{m-q_1}\). Let \(L^{\prime}=\{w=1^k0^{m-q_1} | k \ge 1,q_1 \ge 1 \}\) and \(D= \langle L^{\prime} \rangle_{\gamma}\). We have \(1^{k-k_2} \in D\) for some \(k_2 \ge 0\). This implies that \(1 \in {\rm Pref}(D) \cap D_{\rm s}\), a contradiction.
◻
The authors would like to thank the referees for their careful reading of the manuscript and useful suggestions.
The authors declare no conflict of interest