Total Coloring and Efficient Domination Applications to Non-Cayley Non-Shreier Vertex-transitive Graphs

Italo J. Dejter1
1University of Puerto Rico Rio Piedras, PR 00936-8377

Abstract

Let \( 0<k\in\mathbb{Z} \). Let the star 2-set transposition graph \( ST^2_k \) be the \( (2k-1) \)-regular graph whose vertices are the \( 2k \)-strings on \( k \) symbols, each symbol repeated twice, with its edges given each by the transposition of the initial entry of one such \( 2k \)-string with any entry that contains a different symbol than that of the initial entry. The pancake 2-set transposition graph \( PC^2_k \) has the same vertex set of \( ST^2_k \) and its edges involving each the maximal product of concentric disjoint transpositions in any prefix of an endvertex string, including the external transposition being that of an edge of \( ST^2_k \). For \( 1<k\in\mathbb{Z} \), we show that \( ST^2_k \) and \( PC^2_k \), among other intermediate transposition graphs, have total colorings via \( 2k-1 \) colors. They, in turn, yield efficient dominating sets, or E-sets, of the vertex sets of \( ST^2_k \) and \( PC^2_k \), and partitions into \( 2k-1 \) such E-sets, generalizing Dejter-Serra work on E-sets in such graphs.

Keywords: Total coloring, Efficient domination, Vertex-transitive graphs