The hypercube cut number \( S(d) \) is the minimum number of hyperplanes in the \( d \)-dimensional Euclidean space \( \mathbb{R}^d \) that slice all the edges of the \( d \)-cube. The problem was originally posed by P. O’Neil in 1971. B. Grünbaum, V. Klee, M. Saks, and Z. Füredi have raised the problem in various contexts.
The identity \( S(d) = d \) has been well-known for \( d \leq 4 \) since 1986. However, it was only until the year 2000 that Sohler and Ziegler obtained a computational proof for \( S(5) = 5 \). Nevertheless, finding a short proof for the problem, independent of computer computations, remains a challenging task.
We present a short proof for the result presented by Emamy-Uribe-Tomassini in Hypercube 2002 based on Tomassini’s Thesis. The proof here is substantially shorter than the original proof of 60 pages.