Contents

Roots of Formal Power Series and New Theorems on Riordan Group Elements

MARSHALL M. CoHEN1
1Department of Mathematics, Morgan State University, Baltimore, MD

Abstract

Elements of the Riordan group \(\mathcal{R}\) over a field \(\mathbb{F}\) of characteristic zero are infinite lower triangular matrices which are defined in terms of pairs of formal power series. We wish to bring to the forefront, as a tool in the theory of Riordan groups, the use of multiplicative roots \(a(x)^{\frac{1}{n}}\) of elements \(a(x)\) in the ring of formal power series over \(\mathbb{F}\). Using roots, we give a Normal Form for non-constant formal power series, we prove a surprisingly simple Composition-Cancellation Theorem and apply this to show that, for a major class of Riordan elements (i.e., for non-constant \(g(x)\) and appropriate \(F(x)\)), only one of the two basic conditions for checking that \((g(x), F(x))\) has order \(n\) in the group \(\mathcal{R}\) actually needs to be checked. Using all this, our main result is to generalize C. Marshall [6] and prove: Given non-constant \(g(x)\) satisfying necessary conditions, there exists a unique \(F(x)\), given by an explicit formula, such that \((g(x), F(x))\) is an involution in \(\mathcal{R}\). Finally, as examples, we apply this theorem to “aerated” series \(h(x) = g(x^r)\) to find the unique \(K(x)\) such that \((h(x), K(x))\) is an involution.

Keywords: Riordan group, formal power series, multiplicative roots of formal power series, involutions, group elements of order n.