A characterization of 2-neighborhood degree list of diameter 2 graphs

N. Benakli1, E. Halleck1, S. R. Kingan2
1Department of Mathematics Department of Mathematics NYCCT, CUNY NYCCT, CUNY Brooklyn, NY 11201 Brooklyn, NY 11201
2Department of Mathematics Brooklyn College, CUNY Brooklyn, NY 11210

Abstract

Let \( N_2DL(v) \) denote the set of degrees of vertices at distance \( 2 \) from \( v \). The \( 2 \)-neighborhood degree list of a graph is a listing of \( N_2DL(v) \) for every vertex \( v \). A degree restricted \( 2 \)-switch on edges \( v_1v_2 \) and \( w_1w_2 \), where \( \deg(v_1) = \deg(w_1) \) and \( \deg(v_2) = \deg(w_2) \), is the replacement of a pair of edges \( v_1v_2 \) and \( w_1w_2 \) by the edges \( v_1w_2 \) and \( v_2w_1 \), given that \( v_1w_2 \) and \( v_2w_1 \) did not appear in the graph originally. Let \( G \) and \( H \) be two graphs of diameter \( 2 \) on the same vertex set. We prove that \( G \) and \( H \) have the same \( 2 \)-neighborhood degree list if and only if \( G \) can be transformed into \( H \) by a sequence of degree restricted \( 2 \)-switches.