A famous open problem in the field of rendezvous search is to ascertain the rendezvous value of the symmetric rendezvous problem on the line, wherein both agents begin two units apart. We provide a new, Bayesian framework to both create new strategies for the agents to follow and to provide a new interpretation of previously posited strategies.
Additionally, we have developed a method that modifies any strategy, even those with potentially infinite expected meeting time, into a new strategy that is guaranteed to have a finite expected meeting time. This process, combined with using our Bayesian framework to create new strategies, yields an upper bound that is within one percent of the current best upper bound for the symmetric rendezvous value.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.