Contents

Menger’s Theorem and Short Paths

R. J. Faudree1, E. T. Ordman1, R. H. Schelp1, M. S. Jacobson2, Zs. Tuzareee2
1Memphis State University
2University of Louisville

Abstract

For positive integers \(d\) and \(m\), let \(\text{P}_{\text{d,m}}(\text{G})\) denote the property that between each pair of vertices of the graph \(G\), there are m vertex disjoint (except for the endvertices) paths each of length at most \(d\). Minimal conditions involving various combinations of the connectivity, minimal degree, edge density, and size of a graph \(G\) to insure that \(\text{P}_{\text{d,m}}(\text{G})\) is satisfied are investigated. For example, if a graph \(G\) of order n has connectivity exceeding \((\text{n-m})/\text{d + m} – 1\), then \(\text{P}_{\text{d,m}}(\text{G})\) is satisfied. This result is the best possible in that there is a graph which has connectivity \((\text{n-m})/\text{d + m} – 1\) that does not satisfy \(\text{P}_{\text{d,m}}(\text{G})\). Also, if an \(m\)-connected graph \(G\) of order \(n\) has minimal degree at least \(\lfloor{(\text{n – m} + 2)}/\lfloor{(\text{d} + 4)}/3\rfloor\rfloor+\text{m}-2\), then \(G\) satisfies \(\text{P}_{\text{d,m}}(\text{G})\). Examples are given that show that this minimum degree requirement has the correct order of magnitude, and cannot be substantially weakened without losing Property \(\text{P}_{\text{d,m}}\).