Cohesion Stability Under Edge Destruction

Richard D. Ringeisen1, Virginia Rice1
1Clemson University Clemson, S. Carolina

Abstract

In this paper, we examine the concept of cohesion, which was first introduced in \([2]\) and further studied in \([5]\). Our purpose is to consider the global effects on cohesion when an edge is deleted from a given graph. The earlier paper dealt with such effects when an edge was added, and then in a local sense. After some preliminary discussions and definitions, we move on to display graphs that are “nearly stable” under edge deletion and to further discover an infinite class of \(2\)-connected graphs that are indeed “stable”. This result is followed by some discussion of graphs that have more than one block.