The question of whether all \(B[k,t;k^2]\) designs are \(t\)-resolvable is answered in the affirmative for \(k=3\) and \(t=3\), when the design has no repeated blocks. It is further shown that all such \(B[3,3;9]\) designs are also \(2\)-resolvable.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.