Contents

-

Sequencings of Dicyclic Groups II

B. A. Anderson1
1Department of Mathematics Arizona State University Tempe, AZ 85287

Abstract

Recent examples of perfect 1-factorizations arising from dicyclic groups have led to the question of whether or not dicyclic groups have symmetric sequencings. For every positive integer n2, there is a dicyclic group of order 4n. It is known that if n3 is odd, then the dicyclic group of order 4n has a symmetric sequencing. In this paper, a new proof is given for the odd case; a consequence being that in this situation sequencings abound. A generalization of the original proof is exploited to show that if n4 is even and is not twice an odd number, then the dicyclic group of order 4n has a symmetric sequencing.