The Graphs Determined By an Adjacency Property

Katherine Heinrich1
1Department of Mathematics and Statistics Simon Fraser University Bumaby, B. C. V5A 186 Canada

Abstract

We determine all graphs \(G\) of order at least \(k + 1\), \(k \geq 3\), with the property that for any \(k\)-subset \(S\) of \(V(G)\) there is a unique vertex \(x, x \in V(G) – S\), which has exactly two neighbours in \(S\). Such graphs have exactly \(k + 1\) vertices and consist of a family of vertex-disjoint cycles. When \(k = 2\) it is clear that graphs with this property are the so-called friendship graphs.