The Relationship Between an Edge Colouring Conjecture and A Total Colouring Conjecture

A. LW. Hilton1,2, Zhao Cheng3
1Department of Mathematics University of Reading Whiteknights, Reading RG6 2AX United Kingdom
2Department of Mathematics, West Virginia University, Morgantown, WV 26506, U.S.A.
3West Virginia University Morgantown, WV 26506, U.S.A.

Abstract

Chetwynd and Hilton made the following \({edge-colouring \; conjecture}\): if a simple graph \(G\) satisfies \(\Delta(G) > \frac{1}{3}|V(G)|\), then \(G\) is Class \(2\) if and only if it contains an overfull subgraph \(H\) with \(\Delta(H) = \Delta(G)\). They also made the following \({total-colouring \; conjecture}\): if a simple graph \(G\) satisfies \(\Delta(G) \geq \frac{1}{2}(|V(G)|+ 1)\), then \(G\) is Type \(2\) if and only if \(G\) contains a non-conformable subgraph \(H\) with \(\Delta(H) = \Delta(G)\). Here we show that if the edge-colouring conjecture is true for graphs of even order satisfying \(\Delta(G) > \frac{1}{2}|V(G)|\), then the total-colouring conjecture is true for graphs of odd order satisfying \(\delta(G) \geq \frac{3}{4}{|V(G)|} – \frac{1}{4}\) and \(\text{def}(G) \geq 2(\Delta(G) – \delta(G) + 1)\).