Contents

Possible Automorphism Groups for an \(S(3, 5, 26)\)

Earl S. Kramer1, Spyros S. Magliveras1, Tran van Trung1
1University of Nebraska Lincoln, Nebraska

Abstract

Let \(G\) be the automorphism group of an \((3, 5, 26)\) design. We show the following: (i) If \(13\) divides \(|G|\), then \(G\) is a subgroup of \(Z_2 \times F_{r_{13 \cdot 12}}\), where \(F_{r_{13 \cdot 12}}\) is the Frobenius group of order \(13 \cdot 12\); (ii)If \(5\) divides \(|G|\), then \(G \cong {Z}_5\) or \(G \cong {D}_{10}\); and (iii) Otherwise, either \(|G|\) divides \(3 \cdot 2^3\) or \(2^4\).