Contents

-

Hereditary Clique-Helly Graphs

Erich Prisner1
1Mathematisches Seminar Universitat Hamburg Bundesstr. 55, 2000 Hamburg 13 FR. Germany

Abstract

We define the class of hereditarycliqueHellygraphs or HCH graphs. It consists of those graphs, where the cliques of every induced subgraph obey the so-called `Helly-property’, namely, the total intersection of every family of pairwise intersecting cliques is nonempty. Several characterization and an O(|V|2|E|) recognition algorithm for HCH graphs G=(V,E) are given. It is shown that the clique graph of every HCH graph is a HCH graph, and that conversely every HCH graph is the clique graph of some HCH graph. Finally, it is shown that HCH graphs G=(V,E) have at most |E| cliques, whence a maximum cardinality clique can be found in time O(|V||E|2) in such a HCH graph.