On the Second Order Chromatic Number and Maximal Criticality of a Graph

K. M. Koh1, K. Vijayan2
1Department of Mathematics National University of Singapore Singapore
2Department of Mathematics The University of Western Australia Western Australia

Abstract

Given positive integers \(p\) and \(q\), a \((p, q)\)-colouring of a graph \(G\) is a mapping \(\theta: V(G) \rightarrow \{1, 2, \ldots, q\}\) such that \(\theta(u) \neq \theta(v)\) for all distinct vertices \(u, v\) in \(G\) whose distance \(d(u, v) \leq p\). The \(p\)th order chromatic number \(\chi^{(p)}(G)\) of \(G\) is the minimum value of \(q\) such that \(G\) admits a \((p, q)\)-colouring. \(G\) is said to be \((p, q)\)-maximally critical if \(\chi^{(p)}(G) = q\) and \(\chi^{(p)}(G + e) > q\) for each edge \(e\) not in \(G\).
In this paper, we study the structure of \((2, q)\)-maximally critical graphs. Some necessary or sufficient conditions for a graph to be \((2, q)\)-maximally critical are obtained. Let \(G\) be a \((2, q)\)-maximally critical graph with colour classes \(V_1, V_2, \ldots, V_q\). We show that if \(|V_1| = |V_2| = \cdots = |V_k| = 1\) and \(|V_{k+1}| = \cdots = |V_q| = h \geq 1\) for some \(k\), where \(1 \leq k \leq q-1\), then \(h \leq h^*\), where

\[h^* = \max \left\{k, \min\{q – 1, 2(q – 1 – k)\}\right\}.\]

Furthermore, for each \(h\) with \(1 \leq h \leq h^*\), we are able to construct a \((2, q)\)-maximally critical connected graph with colour classes \(V_1, V_2, \ldots, V_q\) such that \(|V_1| = |V_2| = \cdots = |V_k| = 1\) and \(|V_{k+1}| = \cdots = |V_q| = h\).