We prove that for any tree \(T\) of maximum degree three, there exists a subset \(S\) of \(E(T)\) with \(|S| = O(\log n)\) and a two-coloring of the edges of the forest \(T \setminus S\) such that the two monochromatic forests are isomorphic, where \(n\) is the number of vertices of \(T\) of degree three.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.