Three Constructions of Covers

G.H_J. van Rees1
1Dept. of Computer Science University of Manitoba Winnipeg, Manitoba Canada R3T 2N2

Abstract

Three general constructions for covers are given. A cover is a set of \(k\)-subsets of a \(v\)-set, \(V\), such that every \(t\)-subset of \(V\) is contained in at least one of the \(k\)-sets. These constructions use the idea of dividing the \(v\)-set into either two or three equal sized subsets. The last two constructions also use the idea of establishing a correspondence between the two equal subsets in order to facilitate the construction.