Two Cyclic Supplementary Difference Sets and Optimal Designs in Linear Models

Stathis Chadjiconstantinidis1, Theodore Chadjipadelis2, Kiki Sotirakoglou3
1Department of Mathematics University of Thessaloniki Thessaloniki 54006, Greece
2Department of Education University of Thessaloniki Thessaloniki 54006, Greece
3Science Department Agricultural University of Athens Athens 11855, Greece

Abstract

\(D\)-optimal exact designs in a completely randomized statistical set-up are constructed, for comparing \(n > 2\) qualitative factors (treatments), making \(r\) observations per treatment level in the presence of \(n\) (or less) quantitative or continuous factors (regression factors or covariates) of influence. Their relation with cyclic supplementary difference sets \(2-{(u; k_1, k_2; \lambda)}\) is shown, when \(n = 2u \equiv 2 \pmod{4}\), \(r \equiv 1 \pmod{2}\), \(r \neq 1\), \(r < u\) and \(k_1, k_2, \lambda\) are defined by \(1 \leq k_1 \leq k_2 \leq (u-1)/2\), \((u-2k_1)^2 + (u-2k_2)^2 = 2(ur+u-r)\), \(\lambda = k_1 + k_2 – (u-r)/2\). Making use of known cyclic difference sets, the existence of a multiplier and the non-periodic autocorrelation function of two sequences, such supplementary difference sets are constructed for the first time. A list of all 201 supplementary difference sets \(2-{(u; k_1, k_2; \lambda)}\) for \(n = 2u < 100\) is given.