Asymmetric Digraphs with Prescribed \(m\)-Median and \(m\)-Periphery

Lyle Bertz1, Songlin Tian 1
1Department of Mathematics and Computer Science Central Missouri State University Warrensburg, MO 64093

Abstract

Let \(n \geq 2\) be an arbitrary integer. We show that for any two asymmetric digraphs \(D\) and \(F\) with \(m\)-\(\text{rad} F \geq \max\{4, n+1\}\), there exists an asymmetric digraph \(H\) such that \(m_M(H) \cong D\), \(m_P(H) \cong F\), and \(md(D, F) = n\).
Furthermore, if \(K\) is a nonempty asymmetric digraph isomorphic to an induced subdigraph of both \(D\) and \(F\), then there exists a strong asymmetric digraph \(H\) such that
\(m_M(H) \cong D\), \(m_P(H) \cong F\), and \(m_M(H) \cap m_P(H) \cong K\) if \(m\)-\(\text{rad}_{H_0}F \geq 4\), where \(H_0\) is a digraph obtained from \(D\) and \(F\) by identifying vertices similar to those in \(K\).