A Lower Bound for the Parallel Complexity of Periodicity on Multi Dimensional Arrays

Clive N. Galley1
1Department of Computer Science Kings College London University of London

Abstract

Given that an array \(A[i_{1}, \ldots, i_{d}]\), \(1 \leq i_1 \leq m, \ldots 1 \leq i_d \leq m\), has a \emph{period} \(A[p_{1}, \ldots, p_{d}]\) of dimension \(p_1 \times \cdots p_{d}\) if \(A[i_{1}, \ldots, i_{d}] = A[i_{1} + p_{1}, \ldots, i_{d} + p_{d}]\)
for \(i_{1}, \ldots, i_{d} = 1, \ldots, m – (p_{1}, \ldots, p_{d})\). The \emph{period} of the array is \(A[p_{1}, \ldots, p_{d}]\) for the shortest such \(q = p_{1}, \ldots, p_{d}\).

Consider this array \(A\); we prove a lower bound on the computation of the period length less than \(m^{d}/2^d\) of \(A\) with time complexity
\[
\Omega({\log \log_a m}), \text{ where } a = m^{d^2}
\]
for \(O(m^d)\) work on the CRCW PRAM model of computation.