A CRCW PRAM Lower Bound for Problems on Two Dimensional Arrays

Clive N. Galley1
1Department of Computer Science Kings College London University of London

Abstract

An array \(A[i, j]\), \(1 \leq i \leq n, 1 \leq j \leq n\), has a period \(A[p,p]\) of dimension \(p \times p\) if \(A[i, j] = A[i+p, j+p]\) for \(i, j = 1 \ldots n-p\). The period of \(A_{p,p}\) is the shortest such \(p\).

We study two-dimensional pattern matching, and several other related problems, all of which depend on finding the period of an array.

In summary, finding the period of an array in parallel using \(p\) processors for general alphabets has the following bounds:

\[
\begin{cases}
\Theta\left(\frac{n^2}{p}\right) & \text{if } p \leq \frac{n^2}{\log \log n}, n>17^3 \quad\quad\quad\quad\quad\quad\quad\quad(1.1) \\
\Theta(\log\log n) & \text{if } \frac{n^2}{\log \log n} < p 17^3 \quad\;\; \quad\quad\quad\quad (1.2) \\
\Theta\left(\log\log_{\frac{2p}{n^2}}{p}\right) & \text{if } n^2 \leq p 17^3 \quad \quad\quad\quad\quad (1.3) \\
\Theta\left(\log\log_{\frac{2p}{n^2}}{p}\right) & \text{if } n^2 \log^2 n \leq p \leq n^4, \text{ $n$ large enough} \quad (1.4)
\end{cases}
\]