Contents

Almost Parity Graphs and Claw-Free Parity Graphs

Rommel Barbosa1, Bert Hartnelit2
1Department of Mathematics Universidade Federal do Mato Grosso Cuiabé, MT Brazil
2Department of Mathematics and Computing Science Saint Mary’s University Halifax, NS Canada

Abstract

A graph \(G\) is well-covered if every maximum independent set of vertices of \(G\) has the same cardinality. A graph \(G_1\) is an almost well-covered graph if it is not well-covered, but \(G_1 \setminus \{v\}\) is well-covered, \(\forall v \in V(G_1)\). Similarly, a graph \(H\) is a parity graph if every maximal independent set of vertices of \(H\) has the same parity, and a graph \(H_1\) is an almost parity graph if \(H_1\) is not a parity graph but \(H_1 \setminus \{h\}\) is a parity graph, \(\forall h \in V(H_1)\). Here, we will give a complete characterization of almost parity graphs. We also prove that claw-free parity graphs must be well-covered.