A splitting partition for a graph \(G = (V, E)\) is a partition of \(V\) into sets \(R\), \(B\), and \(U\) so that the subgraphs induced by \(V – R\) and \(V – B\) are isomorphic. The splitting number \(\mu(G)\) is the size of \(|R|\) for any splitting partition which maximizes \(|R|\). This paper determines \(\mu(G)\) for trees of maximum degree at most three and exactly one degree two vertex and for trees all of whose vertices have degree three or one.
1970-2025 CP (Manitoba, Canada) unless otherwise stated.