We describe an algorithm for finding smallest defining sets of designs. Using this algorithm, we show that the 104 \(STS(19)\) which have automorphism group order at least 9 have smallest defining set sizes in the range 18-23. The numbers of designs with smallest defining sets of 18, 19, 20, 21, 22 and 23 blocks are, respectively, 1, 2, 17, 68, 14 and 2.