A Computational Approach for the Ramsey Numbers \(R(C_4 K_n)\)

Stanislaw P. Radziszowski1, Kung-Kuen Tse1
1Department of Computer Science Department of Mathematics Rochester Institute of Technology Kean University Rochester, NY 14623 Union, NJ 07083

Abstract

For graphs \(G\) and \(H\), the Ramsey number \(R(G, H)\) is the least integer \(n\) such that every 2-coloring of the edges of \(K_n\) contains a subgraph isomorphic to \(G\) in the first color or a subgraph isomorphic to \(H\) in the second color. Graph \(G\) is a \((C_4, K_n)\)-graph if \(G\) doesn’t contain a cycle \(C_4\) and \(G\) has no independent set of order \(n\). Jayawardene and Rousseau showed that \(21 \leq R(C_4, K_7) \leq 22\). In this work, we determine \(R(C_4, K_7) = 22\) and \(R(C_4, K_8) = 26\), and enumerate various families of \((C_4, K_n)\)-graphs. In particular, we construct all \((C_4, K_n)\)-graphs for \(n < 7\), and all \((C_4, K_n)\)-graphs on at least 19 vertices. Most of the results are based on computer algorithms.