Given two graphs \(G\) and \(H\), the composition of \(G\) with \(H\) is the graph with vertex set \(V(G) \times V(H)\) in which \((u_1, v_1)\) is adjacent to \((u_2, v_2)\) if and only if \(u_1u_2 \in E(G)\) or \(u_1 = u_2\) and \(v_1v_2 \in E(H)\). In this paper, we prove that the composition of a regular supermagic graph with a null graph is supermagic. With the help of this result, we show that the composition of a cycle with a null graph is always supermagic.