The vertices \(V\) of trees with maximum degree three and \(t\) degree two vertices are partitioned into sets \(R\), \(B\), and \(U\) such that the induced subgraphs \(\langle V – R \rangle\) and \(\langle V – B \rangle\) are isomorphic and \(|U|\) is minimum. It is shown for \(t \geq 2\) that there is such a partition for which \(|U| = 0\) if \(t\) is even and \(|U| = 1\) if \(t\) is odd. This extends earlier work by the authors which answered this problem when \(t = 0\) or \(1\).