Partitioning of Trees Having Maximum Degree at Most Three

Ronald D. Dutton1
1School of Computer Science Robert C. Brigham Department of Mathematics University of Central Florida, Orlando, FL 32816

Abstract

The vertices \(V\) of trees with maximum degree three and \(t\) degree two vertices are partitioned into sets \(R\), \(B\), and \(U\) such that the induced subgraphs \(\langle V – R \rangle\) and \(\langle V – B \rangle\) are isomorphic and \(|U|\) is minimum. It is shown for \(t \geq 2\) that there is such a partition for which \(|U| = 0\) if \(t\) is even and \(|U| = 1\) if \(t\) is odd. This extends earlier work by the authors which answered this problem when \(t = 0\) or \(1\).