De Launey and Seberry have looked at the existence of Generalized Bhaskar Rao designs with block size 4 signed over elementary Abelian groups and shown that the necessary conditions for the existence of a \( (v, 4, \lambda; EA(g)) \) GBRD are sufficient for \( \lambda > g \) with 70 possible basic exceptions. This article extends that work by reducing those possible exceptions to just a \( (9, 4, 18h; EA(9h)) \) GBRD, where \( \gcd(6, h) = 1 \), and shows that for \( \lambda = g \) the necessary conditions are sufficient for \( v > 46 \).