Vertex Magic Total Labeling of Products of Regular VMT Graphs and Regular Supermagic Graphs

Petr Kovai1
1Department of Mathematics and Statistics University of MN Duluth, Minnesota 55812, USA Department of Mathematics and Descriptive Geometry Technical University Ostrava, 708 33, Czech Republic

Abstract

A vertex-magic total labeling of a graph \( G(V, E) \) is defined as a one-to-one mapping from \( V \cup E \) to the set of integers \( \{1,2,\ldots,|V| + |E|\} \) with the property that the sum of the label of a vertex and the labels of all edges incident to this vertex is the same constant for all vertices of the graph. A supermagic labeling of a graph \( G(V, E) \) is defined as a one-to-one mapping from \( E \) to the set of integers \( \{1, 2,\ldots,|E|\} \) with the property that the sum of the labels of all edges incident to a vertex is the same constant for all vertices of the graph.

In this paper, we present a technique for constructing vertex-magic total labelings of products of certain vertex-magic total \( r \)-regular graphs \( G \) and certain \( 2_s \)-regular supermagic graphs \( H \). \( H \) has to be decomposable into two \( s \)-regular factors and if \( r \) is even, \( |H| \) has to be odd.