Contents

The Size Multipartite Ramsey Numbers for Paths

Syafrizal Sy1, Edy Tri Baskoro1, Saledin Uttunggadewa1
1Department of Mathematics Institut Teknologi Bandung Ji. Ganesa 10 Bandung 40132, Indonesia

Abstract

For graphs \( G_1, G_2, \ldots, G_k \), the (generalized) \text{size multipartite Ramsey number} \( m_j(G_1, G_2, \ldots, G_k) \) is the least natural number \( m \) such that any coloring of the edges of \( K_{j \times m} \) with \( k \) colors will yield a copy of \( G_i \) in the \( i \)th color for some \( i \). In this note, we determine the exact value of the size multipartite Ramsey number \( m_j(P_s, P_t) \) for \( s = 2, 3 \) and all integers \( t \geq 2 \), where \( P_t \) denotes a path on \( t \) vertices.