\((2,10) GWhD(10n+1)\)-Existence Results

R. Julian R. Abel1, Stephanie Costa2, Norman J. Finizio3, Malcolm Greig4
1School of Mathematics University of New South Wales Sydney 2052, Australia
2Department of Mathematics and Computer Science Rhode Island College Providence, RI 02908
3Department of Mathematics University of Rhode Island Kingston, RI 02881
4317-130 Eleventh St East North Vancouver, BC Canada V7L 4R3

Abstract

GWhD(\(v\))s, or Generalized Whist Tournament Designs on \( v \) players, are a relatively new type of design. GWhD(\(v\))s are (near) resolvable (\(v,k,k-1\)) BIBDs. For \( k = et \), each block of the design is considered to be a game involving \( e \) teams of \( t \) players each. The design is subject to the requirements that every pair of players appears together in the same game exactly \( t-1 \) times as teammates and exactly \( k-t \) times as opponents. These conditions are referred to as the Generalized Whist Conditions, and when met, we refer to the (N)RBIBD as a (\( t, k \)) GWhD(\(v\)). When \( k = 10 \), necessary conditions on \( v \) are that \( v \equiv 0, 1 \pmod{10} \). In this study, we focus on the existence of (\(2,10\)) GWhD(\(v\)), \(v \equiv 1 \pmod{10}\). It is known that a (\(2,10,9\))-NRBIBD does not exist. Therefore, it is impossible to have a (\(2,10\)) GWhD(\(21\)). It is established here that (\(2,10\)) GWhD(\(10n+1\)) exist for all other \(v\) with at most 42 additional possible exceptions.