Contents

-

On Integer-Magic Spectra of Caterpillars

Ebrahim Salehi1, PATRICK Bennett1
1Department of Mathematical Sciences University of Nevada Las Vegas Las Vegas, NV 89154-4020.

Abstract

For any hN, a graph G=(V,E) is said to be h-magic if there exists a labeling l:E(G)Zh{0} such that the induced vertex set labeling l+:V(G)Zh defined by

l+(v)=uvE(G)l(uv)

is a constant map. For a given graph G, the set of all hZ+ for which G is h-magic is called the integer-magic spectrum of G and is denoted by IM(G). The concept of integer-magic spectrum of a graph was first introduced in [4]. But unfortunately, this paper has a number of incorrect statements and theorems. In this paper, first we will correct some of those statements, then we will determine the integer-magic spectra of caterpillars.

Keywords: magic, non-magic, integer-magic spectrum. 2000 Mathematics Subject Classification: 05C78