On the Covering Numbers \( C_{2}(v, k, t), t > 3 \)

Diya Bluskov1
1Department of Mathematics University of Northern BC Prince George, B.C. V2N 429 Canada

Abstract

A \( t \)-\((v, k, \lambda) \) covering is a set of blocks of size \( k \) such that every \( t \)-subset of a set of \( v \) points is contained in at least \( \lambda \) blocks. The cardinality of the set of blocks is the size of the covering. The covering number \( C_\lambda(v, k, t) \) is the minimum size of a \( t \)-\((v, k, \lambda) \) covering. In this article, we find upper bounds on the size of \( t \)-\((v, k, 2) \) coverings for \( t = 3, 4 \), \( k = 5, 6 \), and \( v \leq 18 \). Twelve of these bounds are the exact covering numbers.